Merge pull request #264 from lowet84/master

Updated encryption service for better use with Docker
This commit is contained in:
Azerelat 2016-03-13 10:46:53 +00:00
commit 8ffb91f414
3 changed files with 148 additions and 1 deletions

View File

@ -319,6 +319,7 @@
<Compile Include="Startup.cs" />
<Compile Include="Models\TorznabQuery.cs" />
<Compile Include="CurlHelper.cs" />
<Compile Include="Utils\StringCipher.cs" />
<Compile Include="Utils\StringUtil.cs" />
<Compile Include="Utils\TorznabCapsUtil.cs" />
<Compile Include="Utils\Clients\UnixSafeCurlWebClient.cs" />

View File

@ -6,6 +6,7 @@ using System.Reflection;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
using Jackett.Utils;
namespace Jackett.Services
{
@ -18,6 +19,7 @@ namespace Jackett.Services
public class ProtectionService : IProtectionService
{
DataProtectionScope PROTECTION_SCOPE = DataProtectionScope.LocalMachine;
private const string JACKETT_KEY = "JACKETT_KEY";
const string APPLICATION_KEY = "Dvz66r3n8vhTGip2/quiw5ISyM37f7L2iOdupzdKmzkvXGhAgQiWK+6F+4qpxjPVNks1qO7LdWuVqRlzgLzeW8mChC6JnBMUS1Fin4N2nS9lh4XPuCZ1che75xO92Nk2vyXUo9KSFG1hvEszAuLfG2Mcg1r0sVyVXd2gQDU/TbY=";
IServerService serverService;
@ -34,6 +36,34 @@ namespace Jackett.Services
}
public string Protect(string plainText)
{
var jackettKey = Environment.GetEnvironmentVariable(JACKETT_KEY);
if (jackettKey == null)
{
return ProtectDefaultMethod(plainText);
}
else
{
return ProtectUsingKey(plainText, jackettKey);
}
}
public string UnProtect(string plainText)
{
var jackettKey = Environment.GetEnvironmentVariable(JACKETT_KEY);
if (jackettKey == null)
{
return UnProtectDefaultMethod(plainText);
}
else
{
return UnProtectUsingKey(plainText, jackettKey);
}
}
private string ProtectDefaultMethod(string plainText)
{
if (string.IsNullOrEmpty(plainText))
return string.Empty;
@ -72,7 +102,7 @@ namespace Jackett.Services
return Convert.ToBase64String(protectedBytes);
}
public string UnProtect(string plainText)
private string UnProtectDefaultMethod(string plainText)
{
if (string.IsNullOrEmpty(plainText))
return string.Empty;
@ -111,6 +141,16 @@ namespace Jackett.Services
return Encoding.UTF8.GetString(unprotectedBytes);
}
private string ProtectUsingKey(string plainText, string key)
{
return StringCipher.Encrypt(plainText, key);
}
private string UnProtectUsingKey(string plainText, string key)
{
return StringCipher.Decrypt(plainText, key);
}
public void Protect<T>(T obj)
{
var type = obj.GetType();

View File

@ -0,0 +1,106 @@
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
namespace Jackett.Utils
{
public static class StringCipher
{
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 256;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = Generate256BitsOfRandomEntropy();
var ivStringBytes = Generate256BitsOfRandomEntropy();
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 256;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
var plainTextBytes = new byte[cipherTextBytes.Length];
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
}
}
}
private static byte[] Generate256BitsOfRandomEntropy()
{
var randomBytes = new byte[32]; // 32 Bytes will give us 256 bits.
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
}
}