bazarr/libs/tqdm/contrib/concurrent.py

131 lines
4.5 KiB
Python
Raw Normal View History

"""
Thin wrappers around `concurrent.futures`.
"""
from __future__ import absolute_import
from contextlib import contextmanager
from ..auto import tqdm as tqdm_auto
from ..std import TqdmWarning
try:
from operator import length_hint
except ImportError:
def length_hint(it, default=0):
"""Returns `len(it)`, falling back to `default`"""
try:
return len(it)
except TypeError:
return default
try:
from os import cpu_count
except ImportError:
try:
from multiprocessing import cpu_count
except ImportError:
def cpu_count():
return 4
import sys
__author__ = {"github.com/": ["casperdcl"]}
__all__ = ['thread_map', 'process_map']
@contextmanager
def ensure_lock(tqdm_class, lock_name=""):
"""get (create if necessary) and then restore `tqdm_class`'s lock"""
old_lock = getattr(tqdm_class, '_lock', None) # don't create a new lock
lock = old_lock or tqdm_class.get_lock() # maybe create a new lock
lock = getattr(lock, lock_name, lock) # maybe subtype
tqdm_class.set_lock(lock)
yield lock
if old_lock is None:
del tqdm_class._lock
else:
tqdm_class.set_lock(old_lock)
def _executor_map(PoolExecutor, fn, *iterables, **tqdm_kwargs):
"""
Implementation of `thread_map` and `process_map`.
Parameters
----------
tqdm_class : [default: tqdm.auto.tqdm].
max_workers : [default: min(32, cpu_count() + 4)].
chunksize : [default: 1].
lock_name : [default: "":str].
"""
kwargs = tqdm_kwargs.copy()
if "total" not in kwargs:
kwargs["total"] = length_hint(iterables[0])
tqdm_class = kwargs.pop("tqdm_class", tqdm_auto)
max_workers = kwargs.pop("max_workers", min(32, cpu_count() + 4))
chunksize = kwargs.pop("chunksize", 1)
lock_name = kwargs.pop("lock_name", "")
with ensure_lock(tqdm_class, lock_name=lock_name) as lk:
pool_kwargs = {'max_workers': max_workers}
sys_version = sys.version_info[:2]
if sys_version >= (3, 7):
# share lock in case workers are already using `tqdm`
pool_kwargs.update(initializer=tqdm_class.set_lock, initargs=(lk,))
map_args = {}
if not (3, 0) < sys_version < (3, 5):
map_args.update(chunksize=chunksize)
with PoolExecutor(**pool_kwargs) as ex:
return list(tqdm_class(ex.map(fn, *iterables, **map_args), **kwargs))
def thread_map(fn, *iterables, **tqdm_kwargs):
"""
Equivalent of `list(map(fn, *iterables))`
driven by `concurrent.futures.ThreadPoolExecutor`.
Parameters
----------
tqdm_class : optional
`tqdm` class to use for bars [default: tqdm.auto.tqdm].
max_workers : int, optional
Maximum number of workers to spawn; passed to
`concurrent.futures.ThreadPoolExecutor.__init__`.
[default: max(32, cpu_count() + 4)].
"""
from concurrent.futures import ThreadPoolExecutor
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
def process_map(fn, *iterables, **tqdm_kwargs):
"""
Equivalent of `list(map(fn, *iterables))`
driven by `concurrent.futures.ProcessPoolExecutor`.
Parameters
----------
tqdm_class : optional
`tqdm` class to use for bars [default: tqdm.auto.tqdm].
max_workers : int, optional
Maximum number of workers to spawn; passed to
`concurrent.futures.ProcessPoolExecutor.__init__`.
[default: min(32, cpu_count() + 4)].
chunksize : int, optional
Size of chunks sent to worker processes; passed to
`concurrent.futures.ProcessPoolExecutor.map`. [default: 1].
lock_name : str, optional
Member of `tqdm_class.get_lock()` to use [default: mp_lock].
"""
from concurrent.futures import ProcessPoolExecutor
if iterables and "chunksize" not in tqdm_kwargs:
# default `chunksize=1` has poor performance for large iterables
# (most time spent dispatching items to workers).
longest_iterable_len = max(map(length_hint, iterables))
if longest_iterable_len > 1000:
from warnings import warn
warn("Iterable length %d > 1000 but `chunksize` is not set."
" This may seriously degrade multiprocess performance."
" Set `chunksize=1` or more." % longest_iterable_len,
TqdmWarning, stacklevel=2)
if "lock_name" not in tqdm_kwargs:
tqdm_kwargs = tqdm_kwargs.copy()
tqdm_kwargs["lock_name"] = "mp_lock"
return _executor_map(ProcessPoolExecutor, fn, *iterables, **tqdm_kwargs)