mirror of https://github.com/morpheus65535/bazarr
249 lines
8.4 KiB
Python
249 lines
8.4 KiB
Python
|
|
||
|
from datetime import datetime, date, time, timedelta
|
||
|
from fractions import Fraction
|
||
|
from importlib import import_module
|
||
|
from collections import OrderedDict
|
||
|
from decimal import Decimal
|
||
|
from logging import warning
|
||
|
from json_tricks import NoPandasException, NoNumpyException
|
||
|
|
||
|
|
||
|
class DuplicateJsonKeyException(Exception):
|
||
|
""" Trying to load a json map which contains duplicate keys, but allow_duplicates is False """
|
||
|
|
||
|
|
||
|
class TricksPairHook(object):
|
||
|
"""
|
||
|
Hook that converts json maps to the appropriate python type (dict or OrderedDict)
|
||
|
and then runs any number of hooks on the individual maps.
|
||
|
"""
|
||
|
def __init__(self, ordered=True, obj_pairs_hooks=None, allow_duplicates=True):
|
||
|
"""
|
||
|
:param ordered: True if maps should retain their ordering.
|
||
|
:param obj_pairs_hooks: An iterable of hooks to apply to elements.
|
||
|
"""
|
||
|
self.map_type = OrderedDict
|
||
|
if not ordered:
|
||
|
self.map_type = dict
|
||
|
self.obj_pairs_hooks = []
|
||
|
if obj_pairs_hooks:
|
||
|
self.obj_pairs_hooks = list(obj_pairs_hooks)
|
||
|
self.allow_duplicates = allow_duplicates
|
||
|
|
||
|
def __call__(self, pairs):
|
||
|
if not self.allow_duplicates:
|
||
|
known = set()
|
||
|
for key, value in pairs:
|
||
|
if key in known:
|
||
|
raise DuplicateJsonKeyException(('Trying to load a json map which contains a' +
|
||
|
' duplicate key "{0:}" (but allow_duplicates is False)').format(key))
|
||
|
known.add(key)
|
||
|
map = self.map_type(pairs)
|
||
|
for hook in self.obj_pairs_hooks:
|
||
|
map = hook(map)
|
||
|
return map
|
||
|
|
||
|
|
||
|
def json_date_time_hook(dct):
|
||
|
"""
|
||
|
Return an encoded date, time, datetime or timedelta to it's python representation, including optional timezone.
|
||
|
|
||
|
:param dct: (dict) json encoded date, time, datetime or timedelta
|
||
|
:return: (date/time/datetime/timedelta obj) python representation of the above
|
||
|
"""
|
||
|
def get_tz(dct):
|
||
|
if not 'tzinfo' in dct:
|
||
|
return None
|
||
|
try:
|
||
|
import pytz
|
||
|
except ImportError as err:
|
||
|
raise ImportError(('Tried to load a json object which has a timezone-aware (date)time. '
|
||
|
'However, `pytz` could not be imported, so the object could not be loaded. '
|
||
|
'Error: {0:}').format(str(err)))
|
||
|
return pytz.timezone(dct['tzinfo'])
|
||
|
|
||
|
if isinstance(dct, dict):
|
||
|
if '__date__' in dct:
|
||
|
return date(year=dct.get('year', 0), month=dct.get('month', 0), day=dct.get('day', 0))
|
||
|
elif '__time__' in dct:
|
||
|
tzinfo = get_tz(dct)
|
||
|
return time(hour=dct.get('hour', 0), minute=dct.get('minute', 0), second=dct.get('second', 0),
|
||
|
microsecond=dct.get('microsecond', 0), tzinfo=tzinfo)
|
||
|
elif '__datetime__' in dct:
|
||
|
tzinfo = get_tz(dct)
|
||
|
return datetime(year=dct.get('year', 0), month=dct.get('month', 0), day=dct.get('day', 0),
|
||
|
hour=dct.get('hour', 0), minute=dct.get('minute', 0), second=dct.get('second', 0),
|
||
|
microsecond=dct.get('microsecond', 0), tzinfo=tzinfo)
|
||
|
elif '__timedelta__' in dct:
|
||
|
return timedelta(days=dct.get('days', 0), seconds=dct.get('seconds', 0),
|
||
|
microseconds=dct.get('microseconds', 0))
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def json_complex_hook(dct):
|
||
|
"""
|
||
|
Return an encoded complex number to it's python representation.
|
||
|
|
||
|
:param dct: (dict) json encoded complex number (__complex__)
|
||
|
:return: python complex number
|
||
|
"""
|
||
|
if isinstance(dct, dict):
|
||
|
if '__complex__' in dct:
|
||
|
parts = dct['__complex__']
|
||
|
assert len(parts) == 2
|
||
|
return parts[0] + parts[1] * 1j
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def numeric_types_hook(dct):
|
||
|
if isinstance(dct, dict):
|
||
|
if '__decimal__' in dct:
|
||
|
return Decimal(dct['__decimal__'])
|
||
|
if '__fraction__' in dct:
|
||
|
return Fraction(numerator=dct['numerator'], denominator=dct['denominator'])
|
||
|
return dct
|
||
|
|
||
|
|
||
|
class ClassInstanceHook(object):
|
||
|
"""
|
||
|
This hook tries to convert json encoded by class_instance_encoder back to it's original instance.
|
||
|
It only works if the environment is the same, e.g. the class is similarly importable and hasn't changed.
|
||
|
"""
|
||
|
def __init__(self, cls_lookup_map=None):
|
||
|
self.cls_lookup_map = cls_lookup_map or {}
|
||
|
|
||
|
def __call__(self, dct):
|
||
|
if isinstance(dct, dict) and '__instance_type__' in dct:
|
||
|
mod, name = dct['__instance_type__']
|
||
|
attrs = dct['attributes']
|
||
|
if mod is None:
|
||
|
try:
|
||
|
Cls = getattr((__import__('__main__')), name)
|
||
|
except (ImportError, AttributeError) as err:
|
||
|
if not name in self.cls_lookup_map:
|
||
|
raise ImportError(('class {0:s} seems to have been exported from the main file, which means '
|
||
|
'it has no module/import path set; you need to provide cls_lookup_map which maps names '
|
||
|
'to classes').format(name))
|
||
|
Cls = self.cls_lookup_map[name]
|
||
|
else:
|
||
|
imp_err = None
|
||
|
try:
|
||
|
module = import_module('{0:}'.format(mod, name))
|
||
|
except ImportError as err:
|
||
|
imp_err = ('encountered import error "{0:}" while importing "{1:}" to decode a json file; perhaps '
|
||
|
'it was encoded in a different environment where {1:}.{2:} was available').format(err, mod, name)
|
||
|
else:
|
||
|
if not hasattr(module, name):
|
||
|
imp_err = 'imported "{0:}" but could find "{1:}" inside while decoding a json file (found {2:}'.format(
|
||
|
module, name, ', '.join(attr for attr in dir(module) if not attr.startswith('_')))
|
||
|
Cls = getattr(module, name)
|
||
|
if imp_err:
|
||
|
if 'name' in self.cls_lookup_map:
|
||
|
Cls = self.cls_lookup_map[name]
|
||
|
else:
|
||
|
raise ImportError(imp_err)
|
||
|
try:
|
||
|
obj = Cls.__new__(Cls)
|
||
|
except TypeError:
|
||
|
raise TypeError(('problem while decoding instance of "{0:s}"; this instance has a special '
|
||
|
'__new__ method and can\'t be restored').format(name))
|
||
|
if hasattr(obj, '__json_decode__'):
|
||
|
obj.__json_decode__(**attrs)
|
||
|
else:
|
||
|
obj.__dict__ = dict(attrs)
|
||
|
return obj
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def json_set_hook(dct):
|
||
|
"""
|
||
|
Return an encoded set to it's python representation.
|
||
|
"""
|
||
|
if isinstance(dct, dict):
|
||
|
if '__set__' in dct:
|
||
|
return set((tuple(item) if isinstance(item, list) else item) for item in dct['__set__'])
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def pandas_hook(dct):
|
||
|
if '__pandas_dataframe__' in dct or '__pandas_series__' in dct:
|
||
|
# todo: this is experimental
|
||
|
if not getattr(pandas_hook, '_warned', False):
|
||
|
pandas_hook._warned = True
|
||
|
warning('Pandas loading support in json-tricks is experimental and may change in future versions.')
|
||
|
if '__pandas_dataframe__' in dct:
|
||
|
try:
|
||
|
from pandas import DataFrame
|
||
|
except ImportError:
|
||
|
raise NoPandasException('Trying to decode a map which appears to represent a pandas data structure, but pandas appears not to be installed.')
|
||
|
from numpy import dtype, array
|
||
|
meta = dct.pop('__pandas_dataframe__')
|
||
|
indx = dct.pop('index') if 'index' in dct else None
|
||
|
dtypes = dict((colname, dtype(tp)) for colname, tp in zip(meta['column_order'], meta['types']))
|
||
|
data = OrderedDict()
|
||
|
for name, col in dct.items():
|
||
|
data[name] = array(col, dtype=dtypes[name])
|
||
|
return DataFrame(
|
||
|
data=data,
|
||
|
index=indx,
|
||
|
columns=meta['column_order'],
|
||
|
# mixed `dtypes` argument not supported, so use duct of numpy arrays
|
||
|
)
|
||
|
elif '__pandas_series__' in dct:
|
||
|
from pandas import Series
|
||
|
from numpy import dtype, array
|
||
|
meta = dct.pop('__pandas_series__')
|
||
|
indx = dct.pop('index') if 'index' in dct else None
|
||
|
return Series(
|
||
|
data=dct['data'],
|
||
|
index=indx,
|
||
|
name=meta['name'],
|
||
|
dtype=dtype(meta['type']),
|
||
|
)
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def nopandas_hook(dct):
|
||
|
if isinstance(dct, dict) and ('__pandas_dataframe__' in dct or '__pandas_series__' in dct):
|
||
|
raise NoPandasException(('Trying to decode a map which appears to represent a pandas '
|
||
|
'data structure, but pandas support is not enabled, perhaps it is not installed.'))
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def json_numpy_obj_hook(dct):
|
||
|
"""
|
||
|
Replace any numpy arrays previously encoded by NumpyEncoder to their proper
|
||
|
shape, data type and data.
|
||
|
|
||
|
:param dct: (dict) json encoded ndarray
|
||
|
:return: (ndarray) if input was an encoded ndarray
|
||
|
"""
|
||
|
if isinstance(dct, dict) and '__ndarray__' in dct:
|
||
|
try:
|
||
|
from numpy import asarray
|
||
|
import numpy as nptypes
|
||
|
except ImportError:
|
||
|
raise NoNumpyException('Trying to decode a map which appears to represent a numpy '
|
||
|
'array, but numpy appears not to be installed.')
|
||
|
order = 'A'
|
||
|
if 'Corder' in dct:
|
||
|
order = 'C' if dct['Corder'] else 'F'
|
||
|
if dct['shape']:
|
||
|
return asarray(dct['__ndarray__'], dtype=dct['dtype'], order=order)
|
||
|
else:
|
||
|
dtype = getattr(nptypes, dct['dtype'])
|
||
|
return dtype(dct['__ndarray__'])
|
||
|
return dct
|
||
|
|
||
|
|
||
|
def json_nonumpy_obj_hook(dct):
|
||
|
"""
|
||
|
This hook has no effect except to check if you're trying to decode numpy arrays without support, and give you a useful message.
|
||
|
"""
|
||
|
if isinstance(dct, dict) and '__ndarray__' in dct:
|
||
|
raise NoNumpyException(('Trying to decode a map which appears to represent a numpy array, '
|
||
|
'but numpy support is not enabled, perhaps it is not installed.'))
|
||
|
return dct
|
||
|
|
||
|
|