mirror of https://github.com/morpheus65535/bazarr
82 lines
2.2 KiB
Python
82 lines
2.2 KiB
Python
|
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
|
||
|
class hashodict(OrderedDict):
|
||
|
"""
|
||
|
This dictionary is hashable. It should NOT be mutated, or all kinds of weird
|
||
|
bugs may appear. This is not enforced though, it's only used for encoding.
|
||
|
"""
|
||
|
def __hash__(self):
|
||
|
return hash(frozenset(self.items()))
|
||
|
|
||
|
|
||
|
try:
|
||
|
from inspect import signature
|
||
|
except ImportError:
|
||
|
try:
|
||
|
from inspect import getfullargspec
|
||
|
except ImportError:
|
||
|
from inspect import getargspec
|
||
|
def get_arg_names(callable):
|
||
|
argspec = getargspec(callable)
|
||
|
return set(argspec.args)
|
||
|
else:
|
||
|
#todo: this is not covered in test case (py 3+ uses `signature`, py2 `getfullargspec`); consider removing it
|
||
|
def get_arg_names(callable):
|
||
|
argspec = getfullargspec(callable)
|
||
|
return set(argspec.args) | set(argspec.kwonlyargs)
|
||
|
else:
|
||
|
def get_arg_names(callable):
|
||
|
sig = signature(callable)
|
||
|
return set(sig.parameters.keys())
|
||
|
|
||
|
|
||
|
def call_with_optional_kwargs(callable, *args, **optional_kwargs):
|
||
|
accepted_kwargs = get_arg_names(callable)
|
||
|
use_kwargs = {}
|
||
|
for key, val in optional_kwargs.items():
|
||
|
if key in accepted_kwargs:
|
||
|
use_kwargs[key] = val
|
||
|
return callable(*args, **use_kwargs)
|
||
|
|
||
|
|
||
|
class NoNumpyException(Exception):
|
||
|
""" Trying to use numpy features, but numpy cannot be found. """
|
||
|
|
||
|
|
||
|
class NoPandasException(Exception):
|
||
|
""" Trying to use pandas features, but pandas cannot be found. """
|
||
|
|
||
|
|
||
|
def get_scalar_repr(npscalar):
|
||
|
return hashodict((
|
||
|
('__ndarray__', npscalar.item()),
|
||
|
('dtype', str(npscalar.dtype)),
|
||
|
('shape', ()),
|
||
|
))
|
||
|
|
||
|
|
||
|
def encode_scalars_inplace(obj):
|
||
|
"""
|
||
|
Searches a data structure of lists, tuples and dicts for numpy scalars
|
||
|
and replaces them by their dictionary representation, which can be loaded
|
||
|
by json-tricks. This happens in-place (the object is changed, use a copy).
|
||
|
"""
|
||
|
from numpy import generic, complex64, complex128
|
||
|
if isinstance(obj, (generic, complex64, complex128)):
|
||
|
return get_scalar_repr(obj)
|
||
|
if isinstance(obj, dict):
|
||
|
for key, val in tuple(obj.items()):
|
||
|
obj[key] = encode_scalars_inplace(val)
|
||
|
return obj
|
||
|
if isinstance(obj, list):
|
||
|
for k, val in enumerate(obj):
|
||
|
obj[k] = encode_scalars_inplace(val)
|
||
|
return obj
|
||
|
if isinstance(obj, (tuple, set)):
|
||
|
return type(obj)(encode_scalars_inplace(val) for val in obj)
|
||
|
return obj
|
||
|
|
||
|
|