mirror of
https://github.com/morpheus65535/bazarr
synced 2024-12-21 23:32:31 +00:00
Improved global search function
* Use Hamming textdistance library Used Hamming textdistance to sort by closest match. * Global search UI improvements Increased dropdown height to show more results initially (and which can also be scrolled into view). Scrollbars will appear automatically as needed. Remove dropdown when Search box is cleared. * Added textdistance 4.6.2 library
This commit is contained in:
parent
bcd8257fda
commit
eb296e13c1
26 changed files with 3155 additions and 2 deletions
|
@ -8,6 +8,8 @@ from app.database import TableShows, TableMovies, database, select
|
|||
|
||||
from ..utils import authenticate
|
||||
|
||||
import textdistance
|
||||
|
||||
api_ns_system_searches = Namespace('System Searches', description='Search for series or movies by name')
|
||||
|
||||
|
||||
|
@ -61,4 +63,6 @@ class Searches(Resource):
|
|||
|
||||
results.append(result)
|
||||
|
||||
# sort results by how closely they match the query
|
||||
results = sorted(results, key=lambda x: textdistance.hamming.distance(query, x['title']))
|
||||
return results
|
||||
|
|
|
@ -19,7 +19,7 @@ type SearchResultItem = {
|
|||
|
||||
function useSearch(query: string) {
|
||||
const debouncedQuery = useDebouncedValue(query, 500);
|
||||
const { data } = useServerSearch(debouncedQuery, debouncedQuery.length > 0);
|
||||
const { data } = useServerSearch(debouncedQuery, debouncedQuery.length >= 0);
|
||||
|
||||
return useMemo<SearchResultItem[]>(
|
||||
() =>
|
||||
|
@ -32,7 +32,6 @@ function useSearch(query: string) {
|
|||
} else {
|
||||
throw new Error("Unknown search result");
|
||||
}
|
||||
|
||||
return {
|
||||
value: `${v.title} (${v.year})`,
|
||||
link,
|
||||
|
@ -92,6 +91,8 @@ const Search: FunctionComponent = () => {
|
|||
size="sm"
|
||||
data={results}
|
||||
value={query}
|
||||
scrollAreaProps={{ type: "auto" }}
|
||||
maxDropdownHeight={400}
|
||||
onChange={setQuery}
|
||||
onBlur={() => setQuery("")}
|
||||
filter={optionsFilter}
|
||||
|
|
1
libs/textdistance-4.6.2.dist-info/INSTALLER
Normal file
1
libs/textdistance-4.6.2.dist-info/INSTALLER
Normal file
|
@ -0,0 +1 @@
|
|||
pip
|
7
libs/textdistance-4.6.2.dist-info/LICENSE
Normal file
7
libs/textdistance-4.6.2.dist-info/LICENSE
Normal file
|
@ -0,0 +1,7 @@
|
|||
Copyright 2018 @orsinium
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
402
libs/textdistance-4.6.2.dist-info/METADATA
Normal file
402
libs/textdistance-4.6.2.dist-info/METADATA
Normal file
|
@ -0,0 +1,402 @@
|
|||
Metadata-Version: 2.1
|
||||
Name: textdistance
|
||||
Version: 4.6.2
|
||||
Summary: Compute distance between the two texts.
|
||||
Home-page: https://github.com/orsinium/textdistance
|
||||
Download-URL: https://github.com/orsinium/textdistance/tarball/master
|
||||
Author: orsinium
|
||||
Author-email: gram@orsinium.dev
|
||||
License: MIT
|
||||
Keywords: distance between text strings sequences iterators
|
||||
Classifier: Development Status :: 5 - Production/Stable
|
||||
Classifier: Environment :: Plugins
|
||||
Classifier: Intended Audience :: Developers
|
||||
Classifier: License :: OSI Approved :: MIT License
|
||||
Classifier: Programming Language :: Python
|
||||
Classifier: Topic :: Scientific/Engineering :: Human Machine Interfaces
|
||||
Requires-Python: >=3.5
|
||||
Description-Content-Type: text/markdown
|
||||
License-File: LICENSE
|
||||
Provides-Extra: dameraulevenshtein
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'dameraulevenshtein'
|
||||
Requires-Dist: jellyfish ; extra == 'dameraulevenshtein'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'dameraulevenshtein'
|
||||
Provides-Extra: hamming
|
||||
Requires-Dist: Levenshtein ; extra == 'hamming'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'hamming'
|
||||
Requires-Dist: jellyfish ; extra == 'hamming'
|
||||
Requires-Dist: distance ; extra == 'hamming'
|
||||
Provides-Extra: jaro
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'jaro'
|
||||
Requires-Dist: Levenshtein ; extra == 'jaro'
|
||||
Provides-Extra: jarowinkler
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'jarowinkler'
|
||||
Requires-Dist: jellyfish ; extra == 'jarowinkler'
|
||||
Provides-Extra: levenshtein
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'levenshtein'
|
||||
Requires-Dist: Levenshtein ; extra == 'levenshtein'
|
||||
Provides-Extra: all
|
||||
Requires-Dist: jellyfish ; extra == 'all'
|
||||
Requires-Dist: numpy ; extra == 'all'
|
||||
Requires-Dist: Levenshtein ; extra == 'all'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'all'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'all'
|
||||
Requires-Dist: distance ; extra == 'all'
|
||||
Requires-Dist: pylev ; extra == 'all'
|
||||
Requires-Dist: py-stringmatching ; extra == 'all'
|
||||
Requires-Dist: tabulate ; extra == 'all'
|
||||
Provides-Extra: benchmark
|
||||
Requires-Dist: jellyfish ; extra == 'benchmark'
|
||||
Requires-Dist: numpy ; extra == 'benchmark'
|
||||
Requires-Dist: Levenshtein ; extra == 'benchmark'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'benchmark'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'benchmark'
|
||||
Requires-Dist: distance ; extra == 'benchmark'
|
||||
Requires-Dist: pylev ; extra == 'benchmark'
|
||||
Requires-Dist: py-stringmatching ; extra == 'benchmark'
|
||||
Requires-Dist: tabulate ; extra == 'benchmark'
|
||||
Provides-Extra: benchmarks
|
||||
Requires-Dist: jellyfish ; extra == 'benchmarks'
|
||||
Requires-Dist: numpy ; extra == 'benchmarks'
|
||||
Requires-Dist: Levenshtein ; extra == 'benchmarks'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'benchmarks'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'benchmarks'
|
||||
Requires-Dist: distance ; extra == 'benchmarks'
|
||||
Requires-Dist: pylev ; extra == 'benchmarks'
|
||||
Requires-Dist: py-stringmatching ; extra == 'benchmarks'
|
||||
Requires-Dist: tabulate ; extra == 'benchmarks'
|
||||
Provides-Extra: common
|
||||
Requires-Dist: jellyfish ; extra == 'common'
|
||||
Requires-Dist: numpy ; extra == 'common'
|
||||
Requires-Dist: Levenshtein ; extra == 'common'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'common'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'common'
|
||||
Provides-Extra: extra
|
||||
Requires-Dist: jellyfish ; extra == 'extra'
|
||||
Requires-Dist: numpy ; extra == 'extra'
|
||||
Requires-Dist: Levenshtein ; extra == 'extra'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'extra'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'extra'
|
||||
Provides-Extra: extras
|
||||
Requires-Dist: jellyfish ; extra == 'extras'
|
||||
Requires-Dist: numpy ; extra == 'extras'
|
||||
Requires-Dist: Levenshtein ; extra == 'extras'
|
||||
Requires-Dist: pyxDamerauLevenshtein ; extra == 'extras'
|
||||
Requires-Dist: rapidfuzz >=2.6.0 ; extra == 'extras'
|
||||
Provides-Extra: lint
|
||||
Requires-Dist: twine ; extra == 'lint'
|
||||
Requires-Dist: mypy ; extra == 'lint'
|
||||
Requires-Dist: isort ; extra == 'lint'
|
||||
Requires-Dist: flake8 ; extra == 'lint'
|
||||
Requires-Dist: types-tabulate ; extra == 'lint'
|
||||
Requires-Dist: flake8-blind-except ; extra == 'lint'
|
||||
Requires-Dist: flake8-bugbear ; extra == 'lint'
|
||||
Requires-Dist: flake8-commas ; extra == 'lint'
|
||||
Requires-Dist: flake8-logging-format ; extra == 'lint'
|
||||
Requires-Dist: flake8-mutable ; extra == 'lint'
|
||||
Requires-Dist: flake8-pep3101 ; extra == 'lint'
|
||||
Requires-Dist: flake8-quotes ; extra == 'lint'
|
||||
Requires-Dist: flake8-string-format ; extra == 'lint'
|
||||
Requires-Dist: flake8-tidy-imports ; extra == 'lint'
|
||||
Requires-Dist: pep8-naming ; extra == 'lint'
|
||||
Provides-Extra: test
|
||||
Requires-Dist: hypothesis ; extra == 'test'
|
||||
Requires-Dist: isort ; extra == 'test'
|
||||
Requires-Dist: numpy ; extra == 'test'
|
||||
Requires-Dist: pytest ; extra == 'test'
|
||||
|
||||
# TextDistance
|
||||
|
||||
![TextDistance logo](logo.png)
|
||||
|
||||
[![Build Status](https://travis-ci.org/life4/textdistance.svg?branch=master)](https://travis-ci.org/life4/textdistance) [![PyPI version](https://img.shields.io/pypi/v/textdistance.svg)](https://pypi.python.org/pypi/textdistance) [![Status](https://img.shields.io/pypi/status/textdistance.svg)](https://pypi.python.org/pypi/textdistance) [![License](https://img.shields.io/pypi/l/textdistance.svg)](LICENSE)
|
||||
|
||||
**TextDistance** -- python library for comparing distance between two or more sequences by many algorithms.
|
||||
|
||||
Features:
|
||||
|
||||
- 30+ algorithms
|
||||
- Pure python implementation
|
||||
- Simple usage
|
||||
- More than two sequences comparing
|
||||
- Some algorithms have more than one implementation in one class.
|
||||
- Optional numpy usage for maximum speed.
|
||||
|
||||
## Algorithms
|
||||
|
||||
### Edit based
|
||||
|
||||
| Algorithm | Class | Functions |
|
||||
|-------------------------------------------------------------------------------------------|----------------------|------------------------|
|
||||
| [Hamming](https://en.wikipedia.org/wiki/Hamming_distance) | `Hamming` | `hamming` |
|
||||
| [MLIPNS](http://www.sial.iias.spb.su/files/386-386-1-PB.pdf) | `Mlipns` | `mlipns` |
|
||||
| [Levenshtein](https://en.wikipedia.org/wiki/Levenshtein_distance) | `Levenshtein` | `levenshtein` |
|
||||
| [Damerau-Levenshtein](https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance) | `DamerauLevenshtein` | `damerau_levenshtein` |
|
||||
| [Jaro-Winkler](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) | `JaroWinkler` | `jaro_winkler`, `jaro` |
|
||||
| [Strcmp95](http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c) | `StrCmp95` | `strcmp95` |
|
||||
| [Needleman-Wunsch](https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm) | `NeedlemanWunsch` | `needleman_wunsch` |
|
||||
| [Gotoh](http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/LOA/Lec6-Sequence-Alignment-Affine-Gaps-Gotoh1982.pdf) | `Gotoh` | `gotoh` |
|
||||
| [Smith-Waterman](https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm) | `SmithWaterman` | `smith_waterman` |
|
||||
|
||||
### Token based
|
||||
|
||||
| Algorithm | Class | Functions |
|
||||
|-------------------------------------------------------------------------------------------|----------------------|---------------|
|
||||
| [Jaccard index](https://en.wikipedia.org/wiki/Jaccard_index) | `Jaccard` | `jaccard` |
|
||||
| [Sørensen–Dice coefficient](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient) | `Sorensen` | `sorensen`, `sorensen_dice`, `dice` |
|
||||
| [Tversky index](https://en.wikipedia.org/wiki/Tversky_index) | `Tversky` | `tversky` |
|
||||
| [Overlap coefficient](https://en.wikipedia.org/wiki/Overlap_coefficient) | `Overlap` | `overlap` |
|
||||
| [Tanimoto distance](https://en.wikipedia.org/wiki/Jaccard_index#Tanimoto_similarity_and_distance) | `Tanimoto` | `tanimoto` |
|
||||
| [Cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity) | `Cosine` | `cosine` |
|
||||
| [Monge-Elkan](https://www.academia.edu/200314/Generalized_Monge-Elkan_Method_for_Approximate_Text_String_Comparison) | `MongeElkan` | `monge_elkan` |
|
||||
| [Bag distance](https://github.com/Yomguithereal/talisman/blob/master/src/metrics/bag.js) | `Bag` | `bag` |
|
||||
|
||||
### Sequence based
|
||||
|
||||
| Algorithm | Class | Functions |
|
||||
|-----------|-------|-----------|
|
||||
| [longest common subsequence similarity](https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) | `LCSSeq` | `lcsseq` |
|
||||
| [longest common substring similarity](https://docs.python.org/2/library/difflib.html#difflib.SequenceMatcher) | `LCSStr` | `lcsstr` |
|
||||
| [Ratcliff-Obershelp similarity](https://en.wikipedia.org/wiki/Gestalt_Pattern_Matching) | `RatcliffObershelp` | `ratcliff_obershelp` |
|
||||
|
||||
### Compression based
|
||||
|
||||
[Normalized compression distance](https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance) with different compression algorithms.
|
||||
|
||||
Classic compression algorithms:
|
||||
|
||||
| Algorithm | Class | Function |
|
||||
|----------------------------------------------------------------------------|-------------|--------------|
|
||||
| [Arithmetic coding](https://en.wikipedia.org/wiki/Arithmetic_coding) | `ArithNCD` | `arith_ncd` |
|
||||
| [RLE](https://en.wikipedia.org/wiki/Run-length_encoding) | `RLENCD` | `rle_ncd` |
|
||||
| [BWT RLE](https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform) | `BWTRLENCD` | `bwtrle_ncd` |
|
||||
|
||||
Normal compression algorithms:
|
||||
|
||||
| Algorithm | Class | Function |
|
||||
|----------------------------------------------------------------------------|--------------|---------------|
|
||||
| Square Root | `SqrtNCD` | `sqrt_ncd` |
|
||||
| [Entropy](https://en.wikipedia.org/wiki/Entropy_(information_theory)) | `EntropyNCD` | `entropy_ncd` |
|
||||
|
||||
Work in progress algorithms that compare two strings as array of bits:
|
||||
|
||||
| Algorithm | Class | Function |
|
||||
|--------------------------------------------|-----------|------------|
|
||||
| [BZ2](https://en.wikipedia.org/wiki/Bzip2) | `BZ2NCD` | `bz2_ncd` |
|
||||
| [LZMA](https://en.wikipedia.org/wiki/LZMA) | `LZMANCD` | `lzma_ncd` |
|
||||
| [ZLib](https://en.wikipedia.org/wiki/Zlib) | `ZLIBNCD` | `zlib_ncd` |
|
||||
|
||||
See [blog post](https://articles.life4web.ru/other/ncd/) for more details about NCD.
|
||||
|
||||
### Phonetic
|
||||
|
||||
| Algorithm | Class | Functions |
|
||||
|------------------------------------------------------------------------------|----------|-----------|
|
||||
| [MRA](https://en.wikipedia.org/wiki/Match_rating_approach) | `MRA` | `mra` |
|
||||
| [Editex](https://anhaidgroup.github.io/py_stringmatching/v0.3.x/Editex.html) | `Editex` | `editex` |
|
||||
|
||||
### Simple
|
||||
|
||||
| Algorithm | Class | Functions |
|
||||
|---------------------|------------|------------|
|
||||
| Prefix similarity | `Prefix` | `prefix` |
|
||||
| Postfix similarity | `Postfix` | `postfix` |
|
||||
| Length distance | `Length` | `length` |
|
||||
| Identity similarity | `Identity` | `identity` |
|
||||
| Matrix similarity | `Matrix` | `matrix` |
|
||||
|
||||
## Installation
|
||||
|
||||
### Stable
|
||||
|
||||
Only pure python implementation:
|
||||
|
||||
```bash
|
||||
pip install textdistance
|
||||
```
|
||||
|
||||
With extra libraries for maximum speed:
|
||||
|
||||
```bash
|
||||
pip install "textdistance[extras]"
|
||||
```
|
||||
|
||||
With all libraries (required for [benchmarking](#benchmarks) and [testing](#running-tests)):
|
||||
|
||||
```bash
|
||||
pip install "textdistance[benchmark]"
|
||||
```
|
||||
|
||||
With algorithm specific extras:
|
||||
|
||||
```bash
|
||||
pip install "textdistance[Hamming]"
|
||||
```
|
||||
|
||||
Algorithms with available extras: `DamerauLevenshtein`, `Hamming`, `Jaro`, `JaroWinkler`, `Levenshtein`.
|
||||
|
||||
### Dev
|
||||
|
||||
Via pip:
|
||||
|
||||
```bash
|
||||
pip install -e git+https://github.com/life4/textdistance.git#egg=textdistance
|
||||
```
|
||||
|
||||
Or clone repo and install with some extras:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/life4/textdistance.git
|
||||
pip install -e ".[benchmark]"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
All algorithms have 2 interfaces:
|
||||
|
||||
1. Class with algorithm-specific params for customizing.
|
||||
1. Class instance with default params for quick and simple usage.
|
||||
|
||||
All algorithms have some common methods:
|
||||
|
||||
1. `.distance(*sequences)` -- calculate distance between sequences.
|
||||
1. `.similarity(*sequences)` -- calculate similarity for sequences.
|
||||
1. `.maximum(*sequences)` -- maximum possible value for distance and similarity. For any sequence: `distance + similarity == maximum`.
|
||||
1. `.normalized_distance(*sequences)` -- normalized distance between sequences. The return value is a float between 0 and 1, where 0 means equal, and 1 totally different.
|
||||
1. `.normalized_similarity(*sequences)` -- normalized similarity for sequences. The return value is a float between 0 and 1, where 0 means totally different, and 1 equal.
|
||||
|
||||
Most common init arguments:
|
||||
|
||||
1. `qval` -- q-value for split sequences into q-grams. Possible values:
|
||||
- 1 (default) -- compare sequences by chars.
|
||||
- 2 or more -- transform sequences to q-grams.
|
||||
- None -- split sequences by words.
|
||||
1. `as_set` -- for token-based algorithms:
|
||||
- True -- `t` and `ttt` is equal.
|
||||
- False (default) -- `t` and `ttt` is different.
|
||||
|
||||
## Examples
|
||||
|
||||
For example, [Hamming distance](https://en.wikipedia.org/wiki/Hamming_distance):
|
||||
|
||||
```python
|
||||
import textdistance
|
||||
|
||||
textdistance.hamming('test', 'text')
|
||||
# 1
|
||||
|
||||
textdistance.hamming.distance('test', 'text')
|
||||
# 1
|
||||
|
||||
textdistance.hamming.similarity('test', 'text')
|
||||
# 3
|
||||
|
||||
textdistance.hamming.normalized_distance('test', 'text')
|
||||
# 0.25
|
||||
|
||||
textdistance.hamming.normalized_similarity('test', 'text')
|
||||
# 0.75
|
||||
|
||||
textdistance.Hamming(qval=2).distance('test', 'text')
|
||||
# 2
|
||||
|
||||
```
|
||||
|
||||
Any other algorithms have same interface.
|
||||
|
||||
## Articles
|
||||
|
||||
A few articles with examples how to use textdistance in the real world:
|
||||
|
||||
- [Guide to Fuzzy Matching with Python](http://theautomatic.net/2019/11/13/guide-to-fuzzy-matching-with-python/)
|
||||
- [String similarity — the basic know your algorithms guide!](https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d7346227)
|
||||
- [Normalized compression distance](https://articles.life4web.ru/other/ncd/)
|
||||
|
||||
## Extra libraries
|
||||
|
||||
For main algorithms textdistance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). [Install](#installation) textdistance with extras for this feature.
|
||||
|
||||
You can disable this by passing `external=False` argument on init:
|
||||
|
||||
```python3
|
||||
import textdistance
|
||||
hamming = textdistance.Hamming(external=False)
|
||||
hamming('text', 'testit')
|
||||
# 3
|
||||
```
|
||||
|
||||
Supported libraries:
|
||||
|
||||
1. [Distance](https://github.com/doukremt/distance)
|
||||
1. [jellyfish](https://github.com/jamesturk/jellyfish)
|
||||
1. [py_stringmatching](https://github.com/anhaidgroup/py_stringmatching)
|
||||
1. [pylev](https://github.com/toastdriven/pylev)
|
||||
1. [Levenshtein](https://github.com/maxbachmann/Levenshtein)
|
||||
1. [pyxDamerauLevenshtein](https://github.com/gfairchild/pyxDamerauLevenshtein)
|
||||
|
||||
Algorithms:
|
||||
|
||||
1. DamerauLevenshtein
|
||||
1. Hamming
|
||||
1. Jaro
|
||||
1. JaroWinkler
|
||||
1. Levenshtein
|
||||
|
||||
## Benchmarks
|
||||
|
||||
Without extras installation:
|
||||
|
||||
| algorithm | library | time |
|
||||
|--------------------|-----------------------|---------|
|
||||
| DamerauLevenshtein | rapidfuzz | 0.00312 |
|
||||
| DamerauLevenshtein | jellyfish | 0.00591 |
|
||||
| DamerauLevenshtein | pyxdameraulevenshtein | 0.03335 |
|
||||
| DamerauLevenshtein | **textdistance** | 0.83524 |
|
||||
| Hamming | Levenshtein | 0.00038 |
|
||||
| Hamming | rapidfuzz | 0.00044 |
|
||||
| Hamming | jellyfish | 0.00091 |
|
||||
| Hamming | distance | 0.00812 |
|
||||
| Hamming | **textdistance** | 0.03531 |
|
||||
| Jaro | rapidfuzz | 0.00092 |
|
||||
| Jaro | jellyfish | 0.00191 |
|
||||
| Jaro | **textdistance** | 0.07365 |
|
||||
| JaroWinkler | rapidfuzz | 0.00094 |
|
||||
| JaroWinkler | jellyfish | 0.00195 |
|
||||
| JaroWinkler | **textdistance** | 0.07501 |
|
||||
| Levenshtein | rapidfuzz | 0.00099 |
|
||||
| Levenshtein | Levenshtein | 0.00122 |
|
||||
| Levenshtein | jellyfish | 0.00254 |
|
||||
| Levenshtein | pylev | 0.15688 |
|
||||
| Levenshtein | distance | 0.28669 |
|
||||
| Levenshtein | **textdistance** | 0.53902 |
|
||||
|
||||
Total: 24 libs.
|
||||
|
||||
Yeah, so slow. Use TextDistance on production only with extras.
|
||||
|
||||
Textdistance use benchmark's results for algorithm's optimization and try to call fastest external lib first (if possible).
|
||||
|
||||
You can run benchmark manually on your system:
|
||||
|
||||
```bash
|
||||
pip install textdistance[benchmark]
|
||||
python3 -m textdistance.benchmark
|
||||
```
|
||||
|
||||
TextDistance show benchmarks results table for your system and save libraries priorities into `libraries.json` file in TextDistance's folder. This file will be used by textdistance for calling fastest algorithm implementation. Default [libraries.json](textdistance/libraries.json) already included in package.
|
||||
|
||||
## Running tests
|
||||
|
||||
All you need is [task](https://taskfile.dev/). See [Taskfile.yml](./Taskfile.yml) for the list of available commands. For example, to run tests including third-party libraries usage, execute `task pytest-external:run`.
|
||||
|
||||
## Contributing
|
||||
|
||||
PRs are welcome!
|
||||
|
||||
- Found a bug? Fix it!
|
||||
- Want to add more algorithms? Sure! Just make it with the same interface as other algorithms in the lib and add some tests.
|
||||
- Can make something faster? Great! Just avoid external dependencies and remember that everything should work not only with strings.
|
||||
- Something else that do you think is good? Do it! Just make sure that CI passes and everything from the README is still applicable (interface, features, and so on).
|
||||
- Have no time to code? Tell your friends and subscribers about `textdistance`. More users, more contributions, more amazing features.
|
||||
|
||||
Thank you :heart:
|
23
libs/textdistance-4.6.2.dist-info/RECORD
Normal file
23
libs/textdistance-4.6.2.dist-info/RECORD
Normal file
|
@ -0,0 +1,23 @@
|
|||
textdistance-4.6.2.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
||||
textdistance-4.6.2.dist-info/LICENSE,sha256=oOV_OJnxc9uQzeaMabB-rqV8Gti-Q1kQXusPgFxoEJI,1049
|
||||
textdistance-4.6.2.dist-info/METADATA,sha256=VEcNYZKg6DmHP3PO13LsHReUXriHMAPQ26SDcTkrENo,18635
|
||||
textdistance-4.6.2.dist-info/RECORD,,
|
||||
textdistance-4.6.2.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
||||
textdistance-4.6.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
||||
textdistance-4.6.2.dist-info/top_level.txt,sha256=GBIsLNa3pcbaPSp8KNq93YdHKE3CNIQMQrLrZdectak,13
|
||||
textdistance/__init__.py,sha256=abtyaG6QgNqbwQTs_8q1rJUSPr78akEOLYgJDXHgtLM,355
|
||||
textdistance/algorithms/__init__.py,sha256=1raagDGcgHenA-Ncj3oKHTCk0ai8ltLdqQzTA__clkg,217
|
||||
textdistance/algorithms/base.py,sha256=IJwzIa3G4n6piDS9dOhSAVUoHmD4sCJCvGHH1Z4F_0o,6332
|
||||
textdistance/algorithms/compression_based.py,sha256=qXg-jUm4ifd1jLLXhvrNkhbi-_JK5AQyjr4026qquVE,8190
|
||||
textdistance/algorithms/edit_based.py,sha256=OZc-sGjzRx0eFl5jsEA3V3Q5MkBJR5QLbZYiz_EAPL0,27598
|
||||
textdistance/algorithms/phonetic.py,sha256=E7yCZVV_6XDkq7tbLHmYd2CAIyj7VQcpf7rQhHXMMj8,6133
|
||||
textdistance/algorithms/sequence_based.py,sha256=0iS9iZkx_eYJQFZKjRpBFp8jCs1c_1Hz0kWq6CBnJVg,6158
|
||||
textdistance/algorithms/simple.py,sha256=2wryMhYmBRDGjG9AT74AAI9SpmYDLABqpSUbw_Fy8AU,3209
|
||||
textdistance/algorithms/token_based.py,sha256=D2__lJONSfvU6Eiuq8IkB6TIBWCHPb3JWNH5LuL5liA,9405
|
||||
textdistance/algorithms/types.py,sha256=PVVh0bcCEK8ziRsmKgHyIJ8i9TERKaGoVA36_5lnAr0,166
|
||||
textdistance/algorithms/vector_based.py,sha256=jmbeSioJlATSlx097ptcJRl0G6dHzp2x_fyOcKYY6ZE,2821
|
||||
textdistance/benchmark.py,sha256=NpxvQQgBFVElQrG0wP44AlmcxEntLI11qj1A0KFSrCY,3818
|
||||
textdistance/libraries.json,sha256=bZw0jXy6oPnKr7VPu0LyOMDA1EAUoF-TDwjazl3lknc,1161
|
||||
textdistance/libraries.py,sha256=GGQsTRlyMOoak2WQ1w_mESgDzmcYeUiCHmWqP0s8ncI,6716
|
||||
textdistance/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
||||
textdistance/utils.py,sha256=SDJclnzpkOpoyJmZ23AO7JZQfdsdpWmOO0xofzi95YQ,783
|
0
libs/textdistance-4.6.2.dist-info/REQUESTED
Normal file
0
libs/textdistance-4.6.2.dist-info/REQUESTED
Normal file
5
libs/textdistance-4.6.2.dist-info/WHEEL
Normal file
5
libs/textdistance-4.6.2.dist-info/WHEEL
Normal file
|
@ -0,0 +1,5 @@
|
|||
Wheel-Version: 1.0
|
||||
Generator: bdist_wheel (0.43.0)
|
||||
Root-Is-Purelib: true
|
||||
Tag: py3-none-any
|
||||
|
1
libs/textdistance-4.6.2.dist-info/top_level.txt
Normal file
1
libs/textdistance-4.6.2.dist-info/top_level.txt
Normal file
|
@ -0,0 +1 @@
|
|||
textdistance
|
20
libs/textdistance/__init__.py
Normal file
20
libs/textdistance/__init__.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
"""
|
||||
TextDistance.
|
||||
Compute distance between sequences.
|
||||
30+ algorithms, pure python implementation, common interface.
|
||||
"""
|
||||
|
||||
# main package info
|
||||
__title__ = 'TextDistance'
|
||||
__version__ = '4.6.2'
|
||||
__author__ = 'Gram (@orsinium)'
|
||||
__license__ = 'MIT'
|
||||
|
||||
|
||||
# version synonym
|
||||
VERSION = __version__
|
||||
|
||||
|
||||
# app
|
||||
from .algorithms import * # noQA
|
||||
from .utils import * # noQA
|
8
libs/textdistance/algorithms/__init__.py
Normal file
8
libs/textdistance/algorithms/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
|
||||
# app
|
||||
from .compression_based import * # noQA
|
||||
from .edit_based import * # noQA
|
||||
from .phonetic import * # noQA
|
||||
from .sequence_based import * # noQA
|
||||
from .simple import * # noQA
|
||||
from .token_based import * # noQA
|
191
libs/textdistance/algorithms/base.py
Normal file
191
libs/textdistance/algorithms/base.py
Normal file
|
@ -0,0 +1,191 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from collections import Counter
|
||||
from contextlib import suppress
|
||||
from typing import Sequence, TypeVar
|
||||
|
||||
# app
|
||||
from ..libraries import prototype
|
||||
from ..utils import find_ngrams
|
||||
|
||||
|
||||
libraries = prototype.clone()
|
||||
libraries.optimize()
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
class Base:
|
||||
def __init__(self, qval: int = 1, external: bool = True) -> None:
|
||||
self.qval = qval
|
||||
self.external = external
|
||||
|
||||
def __call__(self, *sequences: Sequence[object]) -> float:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def maximum(*sequences: Sequence[object]) -> float:
|
||||
"""Get maximum possible value
|
||||
"""
|
||||
return max(map(len, sequences))
|
||||
|
||||
def distance(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get distance between sequences
|
||||
"""
|
||||
return self(*sequences)
|
||||
|
||||
def similarity(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get sequences similarity.
|
||||
|
||||
similarity = maximum - distance
|
||||
"""
|
||||
return self.maximum(*sequences) - self.distance(*sequences)
|
||||
|
||||
def normalized_distance(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get distance from 0 to 1
|
||||
"""
|
||||
maximum = self.maximum(*sequences)
|
||||
if maximum == 0:
|
||||
return 0
|
||||
return self.distance(*sequences) / maximum
|
||||
|
||||
def normalized_similarity(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get similarity from 0 to 1
|
||||
|
||||
normalized_similarity = 1 - normalized_distance
|
||||
"""
|
||||
return 1 - self.normalized_distance(*sequences)
|
||||
|
||||
def external_answer(self, *sequences: Sequence[object]) -> float | None:
|
||||
"""Try to get answer from known external libraries.
|
||||
"""
|
||||
# if this feature disabled
|
||||
if not getattr(self, 'external', False):
|
||||
return None
|
||||
# all external libs don't support test_func
|
||||
test_func = getattr(self, 'test_func', self._ident)
|
||||
if test_func is not self._ident:
|
||||
return None
|
||||
# try to get external libs for algorithm
|
||||
libs = libraries.get_libs(self.__class__.__name__)
|
||||
for lib in libs:
|
||||
# if conditions not satisfied
|
||||
if not lib.check_conditions(self, *sequences):
|
||||
continue
|
||||
# if library is not installed yet
|
||||
func = lib.get_function()
|
||||
if func is None:
|
||||
continue
|
||||
prepared_sequences = lib.prepare(*sequences)
|
||||
# fail side libraries silently and try next libs
|
||||
with suppress(Exception):
|
||||
return func(*prepared_sequences)
|
||||
return None
|
||||
|
||||
def quick_answer(self, *sequences: Sequence[object]) -> float | None:
|
||||
"""Try to get answer quick without main implementation calling.
|
||||
|
||||
If no sequences, 1 sequence or all sequences are equal then return 0.
|
||||
If any sequence are empty then return maximum.
|
||||
And in finish try to get external answer.
|
||||
"""
|
||||
if not sequences:
|
||||
return 0
|
||||
if len(sequences) == 1:
|
||||
return 0
|
||||
if self._ident(*sequences):
|
||||
return 0
|
||||
if not all(sequences):
|
||||
return self.maximum(*sequences)
|
||||
# try get answer from external libs
|
||||
return self.external_answer(*sequences)
|
||||
|
||||
@staticmethod
|
||||
def _ident(*elements: object) -> bool:
|
||||
"""Return True if all sequences are equal.
|
||||
"""
|
||||
try:
|
||||
# for hashable elements
|
||||
return len(set(elements)) == 1
|
||||
except TypeError:
|
||||
# for unhashable elements
|
||||
for e1, e2 in zip(elements, elements[1:]):
|
||||
if e1 != e2:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _get_sequences(self, *sequences: Sequence[object]) -> list:
|
||||
"""Prepare sequences.
|
||||
|
||||
qval=None: split text by words
|
||||
qval=1: do not split sequences. For text this is mean comparing by letters.
|
||||
qval>1: split sequences by q-grams
|
||||
"""
|
||||
# by words
|
||||
if not self.qval:
|
||||
return [s.split() for s in sequences] # type: ignore[attr-defined]
|
||||
# by chars
|
||||
if self.qval == 1:
|
||||
return list(sequences)
|
||||
# by n-grams
|
||||
return [find_ngrams(s, self.qval) for s in sequences]
|
||||
|
||||
def _get_counters(self, *sequences: Sequence[object]) -> list[Counter]:
|
||||
"""Prepare sequences and convert it to Counters.
|
||||
"""
|
||||
# already Counters
|
||||
if all(isinstance(s, Counter) for s in sequences):
|
||||
return list(sequences) # type: ignore[arg-type]
|
||||
return [Counter(s) for s in self._get_sequences(*sequences)]
|
||||
|
||||
def _intersect_counters(self, *sequences: Counter[T]) -> Counter[T]:
|
||||
intersection = sequences[0].copy()
|
||||
for s in sequences[1:]:
|
||||
intersection &= s
|
||||
return intersection
|
||||
|
||||
def _union_counters(self, *sequences: Counter[T]) -> Counter[T]:
|
||||
union = sequences[0].copy()
|
||||
for s in sequences[1:]:
|
||||
union |= s
|
||||
return union
|
||||
|
||||
def _sum_counters(self, *sequences: Counter[T]) -> Counter[T]:
|
||||
result = sequences[0].copy()
|
||||
for s in sequences[1:]:
|
||||
result += s
|
||||
return result
|
||||
|
||||
def _count_counters(self, counter: Counter) -> int:
|
||||
"""Return all elements count from Counter
|
||||
"""
|
||||
if getattr(self, 'as_set', False):
|
||||
return len(set(counter))
|
||||
else:
|
||||
return sum(counter.values())
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '{name}({data})'.format(
|
||||
name=type(self).__name__,
|
||||
data=self.__dict__,
|
||||
)
|
||||
|
||||
|
||||
class BaseSimilarity(Base):
|
||||
def distance(self, *sequences: Sequence[object]) -> float:
|
||||
return self.maximum(*sequences) - self.similarity(*sequences)
|
||||
|
||||
def similarity(self, *sequences: Sequence[object]) -> float:
|
||||
return self(*sequences)
|
||||
|
||||
def quick_answer(self, *sequences: Sequence[object]) -> float | None:
|
||||
if not sequences:
|
||||
return self.maximum(*sequences)
|
||||
if len(sequences) == 1:
|
||||
return self.maximum(*sequences)
|
||||
if self._ident(*sequences):
|
||||
return self.maximum(*sequences)
|
||||
if not all(sequences):
|
||||
return 0
|
||||
# try get answer from external libs
|
||||
return self.external_answer(*sequences)
|
286
libs/textdistance/algorithms/compression_based.py
Normal file
286
libs/textdistance/algorithms/compression_based.py
Normal file
|
@ -0,0 +1,286 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
import codecs
|
||||
import math
|
||||
from collections import Counter
|
||||
from fractions import Fraction
|
||||
from itertools import groupby, permutations
|
||||
from typing import Any, Sequence, TypeVar
|
||||
|
||||
# app
|
||||
from .base import Base as _Base
|
||||
|
||||
|
||||
try:
|
||||
# built-in
|
||||
import lzma
|
||||
except ImportError:
|
||||
lzma = None # type: ignore[assignment]
|
||||
|
||||
|
||||
__all__ = [
|
||||
'ArithNCD', 'LZMANCD', 'BZ2NCD', 'RLENCD', 'BWTRLENCD', 'ZLIBNCD',
|
||||
'SqrtNCD', 'EntropyNCD',
|
||||
|
||||
'bz2_ncd', 'lzma_ncd', 'arith_ncd', 'rle_ncd', 'bwtrle_ncd', 'zlib_ncd',
|
||||
'sqrt_ncd', 'entropy_ncd',
|
||||
]
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
class _NCDBase(_Base):
|
||||
"""Normalized compression distance (NCD)
|
||||
|
||||
https://articles.orsinium.dev/other/ncd/
|
||||
https://en.wikipedia.org/wiki/Normalized_compression_distance#Normalized_compression_distance
|
||||
"""
|
||||
qval = 1
|
||||
|
||||
def __init__(self, qval: int = 1) -> None:
|
||||
self.qval = qval
|
||||
|
||||
def maximum(self, *sequences) -> int:
|
||||
return 1
|
||||
|
||||
def _get_size(self, data: str) -> float:
|
||||
return len(self._compress(data))
|
||||
|
||||
def _compress(self, data: str) -> Any:
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, *sequences) -> float:
|
||||
if not sequences:
|
||||
return 0
|
||||
sequences = self._get_sequences(*sequences)
|
||||
|
||||
concat_len = float('Inf')
|
||||
empty = type(sequences[0])()
|
||||
for mutation in permutations(sequences):
|
||||
if isinstance(empty, (str, bytes)):
|
||||
data = empty.join(mutation)
|
||||
else:
|
||||
data = sum(mutation, empty)
|
||||
concat_len = min(concat_len, self._get_size(data)) # type: ignore[arg-type]
|
||||
|
||||
compressed_lens = [self._get_size(s) for s in sequences]
|
||||
max_len = max(compressed_lens)
|
||||
if max_len == 0:
|
||||
return 0
|
||||
return (concat_len - min(compressed_lens) * (len(sequences) - 1)) / max_len
|
||||
|
||||
|
||||
class _BinaryNCDBase(_NCDBase):
|
||||
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def __call__(self, *sequences) -> float:
|
||||
if not sequences:
|
||||
return 0
|
||||
if isinstance(sequences[0], str):
|
||||
sequences = tuple(s.encode('utf-8') for s in sequences)
|
||||
return super().__call__(*sequences)
|
||||
|
||||
|
||||
class ArithNCD(_NCDBase):
|
||||
"""Arithmetic coding
|
||||
|
||||
https://github.com/gw-c/arith
|
||||
http://www.drdobbs.com/cpp/data-compression-with-arithmetic-encodin/240169251
|
||||
https://en.wikipedia.org/wiki/Arithmetic_coding
|
||||
"""
|
||||
|
||||
def __init__(self, base: int = 2, terminator: str | None = None, qval: int = 1) -> None:
|
||||
self.base = base
|
||||
self.terminator = terminator
|
||||
self.qval = qval
|
||||
|
||||
def _make_probs(self, *sequences) -> dict[str, tuple[Fraction, Fraction]]:
|
||||
"""
|
||||
https://github.com/gw-c/arith/blob/master/arith.py
|
||||
"""
|
||||
sequences = self._get_counters(*sequences)
|
||||
counts = self._sum_counters(*sequences)
|
||||
if self.terminator is not None:
|
||||
counts[self.terminator] = 1
|
||||
total_letters = sum(counts.values())
|
||||
|
||||
prob_pairs = {}
|
||||
cumulative_count = 0
|
||||
for char, current_count in counts.most_common():
|
||||
prob_pairs[char] = (
|
||||
Fraction(cumulative_count, total_letters),
|
||||
Fraction(current_count, total_letters),
|
||||
)
|
||||
cumulative_count += current_count
|
||||
assert cumulative_count == total_letters
|
||||
return prob_pairs
|
||||
|
||||
def _get_range(
|
||||
self,
|
||||
data: str,
|
||||
probs: dict[str, tuple[Fraction, Fraction]],
|
||||
) -> tuple[Fraction, Fraction]:
|
||||
if self.terminator is not None:
|
||||
if self.terminator in data:
|
||||
data = data.replace(self.terminator, '')
|
||||
data += self.terminator
|
||||
|
||||
start = Fraction(0, 1)
|
||||
width = Fraction(1, 1)
|
||||
for char in data:
|
||||
prob_start, prob_width = probs[char]
|
||||
start += prob_start * width
|
||||
width *= prob_width
|
||||
return start, start + width
|
||||
|
||||
def _compress(self, data: str) -> Fraction:
|
||||
probs = self._make_probs(data)
|
||||
start, end = self._get_range(data=data, probs=probs)
|
||||
output_fraction = Fraction(0, 1)
|
||||
output_denominator = 1
|
||||
while not (start <= output_fraction < end):
|
||||
output_numerator = 1 + ((start.numerator * output_denominator) // start.denominator)
|
||||
output_fraction = Fraction(output_numerator, output_denominator)
|
||||
output_denominator *= 2
|
||||
return output_fraction
|
||||
|
||||
def _get_size(self, data: str) -> int:
|
||||
numerator = self._compress(data).numerator
|
||||
if numerator == 0:
|
||||
return 0
|
||||
return math.ceil(math.log(numerator, self.base))
|
||||
|
||||
|
||||
class RLENCD(_NCDBase):
|
||||
"""Run-length encoding
|
||||
|
||||
https://en.wikipedia.org/wiki/Run-length_encoding
|
||||
"""
|
||||
|
||||
def _compress(self, data: Sequence) -> str:
|
||||
new_data = []
|
||||
for k, g in groupby(data):
|
||||
n = len(list(g))
|
||||
if n > 2:
|
||||
new_data.append(str(n) + k)
|
||||
elif n == 1:
|
||||
new_data.append(k)
|
||||
else:
|
||||
new_data.append(2 * k)
|
||||
return ''.join(new_data)
|
||||
|
||||
|
||||
class BWTRLENCD(RLENCD):
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
|
||||
https://en.wikipedia.org/wiki/Run-length_encoding
|
||||
"""
|
||||
|
||||
def __init__(self, terminator: str = '\0') -> None:
|
||||
self.terminator: Any = terminator
|
||||
|
||||
def _compress(self, data: str) -> str:
|
||||
if not data:
|
||||
data = self.terminator
|
||||
elif self.terminator not in data:
|
||||
data += self.terminator
|
||||
modified = sorted(data[i:] + data[:i] for i in range(len(data)))
|
||||
empty = type(data)()
|
||||
data = empty.join(subdata[-1] for subdata in modified)
|
||||
return super()._compress(data)
|
||||
|
||||
|
||||
# -- NORMAL COMPRESSORS -- #
|
||||
|
||||
|
||||
class SqrtNCD(_NCDBase):
|
||||
"""Square Root based NCD
|
||||
|
||||
Size of compressed data equals to sum of square roots of counts of every
|
||||
element in the input sequence.
|
||||
"""
|
||||
|
||||
def __init__(self, qval: int = 1) -> None:
|
||||
self.qval = qval
|
||||
|
||||
def _compress(self, data: Sequence[T]) -> dict[T, float]:
|
||||
return {element: math.sqrt(count) for element, count in Counter(data).items()}
|
||||
|
||||
def _get_size(self, data: Sequence) -> float:
|
||||
return sum(self._compress(data).values())
|
||||
|
||||
|
||||
class EntropyNCD(_NCDBase):
|
||||
"""Entropy based NCD
|
||||
|
||||
Get Entropy of input sequence as a size of compressed data.
|
||||
|
||||
https://en.wikipedia.org/wiki/Entropy_(information_theory)
|
||||
https://en.wikipedia.org/wiki/Entropy_encoding
|
||||
"""
|
||||
|
||||
def __init__(self, qval: int = 1, coef: int = 1, base: int = 2) -> None:
|
||||
self.qval = qval
|
||||
self.coef = coef
|
||||
self.base = base
|
||||
|
||||
def _compress(self, data: Sequence) -> float:
|
||||
total_count = len(data)
|
||||
entropy = 0.0
|
||||
for element_count in Counter(data).values():
|
||||
p = element_count / total_count
|
||||
entropy -= p * math.log(p, self.base)
|
||||
assert entropy >= 0
|
||||
return entropy
|
||||
|
||||
# # redundancy:
|
||||
# unique_count = len(counter)
|
||||
# absolute_entropy = math.log(unique_count, 2) / unique_count
|
||||
# return absolute_entropy - entropy / unique_count
|
||||
|
||||
def _get_size(self, data: Sequence) -> float:
|
||||
return self.coef + self._compress(data)
|
||||
|
||||
|
||||
# -- BINARY COMPRESSORS -- #
|
||||
|
||||
|
||||
class BZ2NCD(_BinaryNCDBase):
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Bzip2
|
||||
"""
|
||||
|
||||
def _compress(self, data: str | bytes) -> bytes:
|
||||
return codecs.encode(data, 'bz2_codec')[15:]
|
||||
|
||||
|
||||
class LZMANCD(_BinaryNCDBase):
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/LZMA
|
||||
"""
|
||||
|
||||
def _compress(self, data: bytes) -> bytes:
|
||||
if not lzma:
|
||||
raise ImportError('Please, install the PylibLZMA module')
|
||||
return lzma.compress(data)[14:]
|
||||
|
||||
|
||||
class ZLIBNCD(_BinaryNCDBase):
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Zlib
|
||||
"""
|
||||
|
||||
def _compress(self, data: str | bytes) -> bytes:
|
||||
return codecs.encode(data, 'zlib_codec')[2:]
|
||||
|
||||
|
||||
arith_ncd = ArithNCD()
|
||||
bwtrle_ncd = BWTRLENCD()
|
||||
bz2_ncd = BZ2NCD()
|
||||
lzma_ncd = LZMANCD()
|
||||
rle_ncd = RLENCD()
|
||||
zlib_ncd = ZLIBNCD()
|
||||
sqrt_ncd = SqrtNCD()
|
||||
entropy_ncd = EntropyNCD()
|
847
libs/textdistance/algorithms/edit_based.py
Normal file
847
libs/textdistance/algorithms/edit_based.py
Normal file
|
@ -0,0 +1,847 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from collections import defaultdict
|
||||
from itertools import zip_longest
|
||||
from typing import Any, Sequence, TypeVar
|
||||
|
||||
# app
|
||||
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||||
from .types import SimFunc, TestFunc
|
||||
|
||||
|
||||
try:
|
||||
# external
|
||||
import numpy
|
||||
except ImportError:
|
||||
numpy = None # type: ignore[assignment]
|
||||
|
||||
|
||||
__all__ = [
|
||||
'Hamming', 'MLIPNS',
|
||||
'Levenshtein', 'DamerauLevenshtein',
|
||||
'Jaro', 'JaroWinkler', 'StrCmp95',
|
||||
'NeedlemanWunsch', 'Gotoh', 'SmithWaterman',
|
||||
|
||||
'hamming', 'mlipns',
|
||||
'levenshtein', 'damerau_levenshtein',
|
||||
'jaro', 'jaro_winkler', 'strcmp95',
|
||||
'needleman_wunsch', 'gotoh', 'smith_waterman',
|
||||
]
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
class Hamming(_Base):
|
||||
"""
|
||||
Compute the Hamming distance between the two or more sequences.
|
||||
The Hamming distance is the number of differing items in ordered sequences.
|
||||
|
||||
https://en.wikipedia.org/wiki/Hamming_distance
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
test_func: TestFunc | None = None,
|
||||
truncate: bool = False,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.test_func = test_func or self._ident
|
||||
self.truncate = truncate
|
||||
self.external = external
|
||||
|
||||
def __call__(self, *sequences: Sequence[object]) -> int:
|
||||
sequences = self._get_sequences(*sequences)
|
||||
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
assert isinstance(result, int)
|
||||
return result
|
||||
|
||||
_zip = zip if self.truncate else zip_longest
|
||||
return sum(not self.test_func(*es) for es in _zip(*sequences))
|
||||
|
||||
|
||||
class Levenshtein(_Base):
|
||||
"""
|
||||
Compute the absolute Levenshtein distance between the two sequences.
|
||||
The Levenshtein distance is the minimum number of edit operations necessary
|
||||
for transforming one sequence into the other. The edit operations allowed are:
|
||||
|
||||
* deletion: ABC -> BC, AC, AB
|
||||
* insertion: ABC -> ABCD, EABC, AEBC..
|
||||
* substitution: ABC -> ABE, ADC, FBC..
|
||||
|
||||
https://en.wikipedia.org/wiki/Levenshtein_distance
|
||||
TODO: https://gist.github.com/kylebgorman/1081951/9b38b7743a3cb5167ab2c6608ac8eea7fc629dca
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
test_func: TestFunc | None = None,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.test_func = test_func or self._ident
|
||||
self.external = external
|
||||
|
||||
def _recursive(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
# TODO: more than 2 sequences support
|
||||
if not s1 or not s2:
|
||||
return len(s1) + len(s2)
|
||||
|
||||
if self.test_func(s1[-1], s2[-1]):
|
||||
return self(s1[:-1], s2[:-1])
|
||||
|
||||
# deletion/insertion
|
||||
d = min(
|
||||
self(s1[:-1], s2),
|
||||
self(s1, s2[:-1]),
|
||||
)
|
||||
# substitution
|
||||
s = self(s1[:-1], s2[:-1])
|
||||
return min(d, s) + 1
|
||||
|
||||
def _cycled(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
"""
|
||||
source:
|
||||
https://github.com/jamesturk/jellyfish/blob/master/jellyfish/_jellyfish.py#L18
|
||||
"""
|
||||
rows = len(s1) + 1
|
||||
cols = len(s2) + 1
|
||||
prev = None
|
||||
cur: Any
|
||||
if numpy:
|
||||
cur = numpy.arange(cols)
|
||||
else:
|
||||
cur = range(cols)
|
||||
|
||||
for r in range(1, rows):
|
||||
prev, cur = cur, [r] + [0] * (cols - 1)
|
||||
for c in range(1, cols):
|
||||
deletion = prev[c] + 1
|
||||
insertion = cur[c - 1] + 1
|
||||
dist = self.test_func(s1[r - 1], s2[c - 1])
|
||||
edit = prev[c - 1] + (not dist)
|
||||
cur[c] = min(edit, deletion, insertion)
|
||||
return int(cur[-1])
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
assert isinstance(result, int)
|
||||
return result
|
||||
|
||||
return self._cycled(s1, s2)
|
||||
|
||||
|
||||
class DamerauLevenshtein(_Base):
|
||||
"""
|
||||
Compute the absolute Damerau-Levenshtein distance between the two sequences.
|
||||
The Damerau-Levenshtein distance is the minimum number of edit operations necessary
|
||||
for transforming one sequence into the other. The edit operations allowed are:
|
||||
|
||||
* deletion: ABC -> BC, AC, AB
|
||||
* insertion: ABC -> ABCD, EABC, AEBC..
|
||||
* substitution: ABC -> ABE, ADC, FBC..
|
||||
* transposition: ABC -> ACB, BAC
|
||||
|
||||
If `restricted=False`, it will calculate unrestricted distance,
|
||||
where the same character can be touched more than once.
|
||||
So the distance between BA and ACB is 2: BA -> AB -> ACB.
|
||||
|
||||
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
test_func: TestFunc | None = None,
|
||||
external: bool = True,
|
||||
restricted: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.test_func = test_func or self._ident
|
||||
self.external = external
|
||||
self.restricted = restricted
|
||||
|
||||
def _numpy(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
# TODO: doesn't pass tests, need improve
|
||||
d = numpy.zeros([len(s1) + 1, len(s2) + 1], dtype=int)
|
||||
|
||||
# matrix
|
||||
for i in range(-1, len(s1) + 1):
|
||||
d[i][-1] = i + 1
|
||||
for j in range(-1, len(s2) + 1):
|
||||
d[-1][j] = j + 1
|
||||
|
||||
for i, cs1 in enumerate(s1):
|
||||
for j, cs2 in enumerate(s2):
|
||||
cost = int(not self.test_func(cs1, cs2))
|
||||
# ^ 0 if equal, 1 otherwise
|
||||
|
||||
d[i][j] = min(
|
||||
d[i - 1][j] + 1, # deletion
|
||||
d[i][j - 1] + 1, # insertion
|
||||
d[i - 1][j - 1] + cost, # substitution
|
||||
)
|
||||
|
||||
# transposition
|
||||
if not i or not j:
|
||||
continue
|
||||
if not self.test_func(cs1, s2[j - 1]):
|
||||
continue
|
||||
d[i][j] = min(
|
||||
d[i][j],
|
||||
d[i - 2][j - 2] + cost,
|
||||
)
|
||||
|
||||
return d[len(s1) - 1][len(s2) - 1]
|
||||
|
||||
def _pure_python_unrestricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
"""https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
|
||||
"""
|
||||
d: dict[tuple[int, int], int] = {}
|
||||
da: dict[T, int] = {}
|
||||
|
||||
len1 = len(s1)
|
||||
len2 = len(s2)
|
||||
|
||||
maxdist = len1 + len2
|
||||
d[-1, -1] = maxdist
|
||||
|
||||
# matrix
|
||||
for i in range(len(s1) + 1):
|
||||
d[i, -1] = maxdist
|
||||
d[i, 0] = i
|
||||
for j in range(len(s2) + 1):
|
||||
d[-1, j] = maxdist
|
||||
d[0, j] = j
|
||||
|
||||
for i, cs1 in enumerate(s1, start=1):
|
||||
db = 0
|
||||
for j, cs2 in enumerate(s2, start=1):
|
||||
i1 = da.get(cs2, 0)
|
||||
j1 = db
|
||||
if self.test_func(cs1, cs2):
|
||||
cost = 0
|
||||
db = j
|
||||
else:
|
||||
cost = 1
|
||||
|
||||
d[i, j] = min(
|
||||
d[i - 1, j - 1] + cost, # substitution
|
||||
d[i, j - 1] + 1, # insertion
|
||||
d[i - 1, j] + 1, # deletion
|
||||
d[i1 - 1, j1 - 1] + (i - i1) - 1 + (j - j1), # transposition
|
||||
)
|
||||
da[cs1] = i
|
||||
|
||||
return d[len1, len2]
|
||||
|
||||
def _pure_python_restricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
"""
|
||||
https://www.guyrutenberg.com/2008/12/15/damerau-levenshtein-distance-in-python/
|
||||
"""
|
||||
d: dict[tuple[int, int], int] = {}
|
||||
|
||||
# matrix
|
||||
for i in range(-1, len(s1) + 1):
|
||||
d[i, -1] = i + 1
|
||||
for j in range(-1, len(s2) + 1):
|
||||
d[-1, j] = j + 1
|
||||
|
||||
for i, cs1 in enumerate(s1):
|
||||
for j, cs2 in enumerate(s2):
|
||||
cost = int(not self.test_func(cs1, cs2))
|
||||
# ^ 0 if equal, 1 otherwise
|
||||
|
||||
d[i, j] = min(
|
||||
d[i - 1, j] + 1, # deletion
|
||||
d[i, j - 1] + 1, # insertion
|
||||
d[i - 1, j - 1] + cost, # substitution
|
||||
)
|
||||
|
||||
# transposition
|
||||
if not i or not j:
|
||||
continue
|
||||
if not self.test_func(cs1, s2[j - 1]):
|
||||
continue
|
||||
if not self.test_func(s1[i - 1], cs2):
|
||||
continue
|
||||
d[i, j] = min(
|
||||
d[i, j],
|
||||
d[i - 2, j - 2] + cost,
|
||||
)
|
||||
|
||||
return d[len(s1) - 1, len(s2) - 1]
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
return result # type: ignore[return-value]
|
||||
|
||||
# if numpy:
|
||||
# return self._numpy(s1, s2)
|
||||
# else:
|
||||
if self.restricted:
|
||||
return self._pure_python_restricted(s1, s2)
|
||||
return self._pure_python_unrestricted(s1, s2)
|
||||
|
||||
|
||||
class JaroWinkler(_BaseSimilarity):
|
||||
"""
|
||||
Computes the Jaro-Winkler measure between two strings.
|
||||
The Jaro-Winkler measure is designed to capture cases where two strings
|
||||
have a low Jaro score, but share a prefix.
|
||||
and thus are likely to match.
|
||||
|
||||
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro.js
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro-winkler.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
long_tolerance: bool = False,
|
||||
winklerize: bool = True,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.long_tolerance = long_tolerance
|
||||
self.winklerize = winklerize
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T], prefix_weight: float = 0.1) -> float:
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
s1_len = len(s1)
|
||||
s2_len = len(s2)
|
||||
|
||||
if not s1_len or not s2_len:
|
||||
return 0.0
|
||||
|
||||
min_len = min(s1_len, s2_len)
|
||||
search_range = max(s1_len, s2_len)
|
||||
search_range = (search_range // 2) - 1
|
||||
if search_range < 0:
|
||||
search_range = 0
|
||||
|
||||
s1_flags = [False] * s1_len
|
||||
s2_flags = [False] * s2_len
|
||||
|
||||
# looking only within search range, count & flag matched pairs
|
||||
common_chars = 0
|
||||
for i, s1_ch in enumerate(s1):
|
||||
low = max(0, i - search_range)
|
||||
hi = min(i + search_range, s2_len - 1)
|
||||
for j in range(low, hi + 1):
|
||||
if not s2_flags[j] and s2[j] == s1_ch:
|
||||
s1_flags[i] = s2_flags[j] = True
|
||||
common_chars += 1
|
||||
break
|
||||
|
||||
# short circuit if no characters match
|
||||
if not common_chars:
|
||||
return 0.0
|
||||
|
||||
# count transpositions
|
||||
k = trans_count = 0
|
||||
for i, s1_f in enumerate(s1_flags):
|
||||
if s1_f:
|
||||
for j in range(k, s2_len):
|
||||
if s2_flags[j]:
|
||||
k = j + 1
|
||||
break
|
||||
if s1[i] != s2[j]:
|
||||
trans_count += 1
|
||||
trans_count //= 2
|
||||
|
||||
# adjust for similarities in nonmatched characters
|
||||
weight = common_chars / s1_len + common_chars / s2_len
|
||||
weight += (common_chars - trans_count) / common_chars
|
||||
weight /= 3
|
||||
|
||||
# stop to boost if strings are not similar
|
||||
if not self.winklerize:
|
||||
return weight
|
||||
if weight <= 0.7:
|
||||
return weight
|
||||
|
||||
# winkler modification
|
||||
# adjust for up to first 4 chars in common
|
||||
j = min(min_len, 4)
|
||||
i = 0
|
||||
while i < j and s1[i] == s2[i]:
|
||||
i += 1
|
||||
if i:
|
||||
weight += i * prefix_weight * (1.0 - weight)
|
||||
|
||||
# optionally adjust for long strings
|
||||
# after agreeing beginning chars, at least two or more must agree and
|
||||
# agreed characters must be > half of remaining characters
|
||||
if not self.long_tolerance or min_len <= 4:
|
||||
return weight
|
||||
if common_chars <= i + 1 or 2 * common_chars < min_len + i:
|
||||
return weight
|
||||
tmp = (common_chars - i - 1) / (s1_len + s2_len - i * 2 + 2)
|
||||
weight += (1.0 - weight) * tmp
|
||||
return weight
|
||||
|
||||
|
||||
class Jaro(JaroWinkler):
|
||||
def __init__(
|
||||
self,
|
||||
long_tolerance: bool = False,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
long_tolerance=long_tolerance,
|
||||
winklerize=False,
|
||||
qval=qval,
|
||||
external=external,
|
||||
)
|
||||
|
||||
|
||||
class NeedlemanWunsch(_BaseSimilarity):
|
||||
"""
|
||||
Computes the Needleman-Wunsch measure between two strings.
|
||||
The Needleman-Wunsch generalizes the Levenshtein distance and considers global
|
||||
alignment between two strings. Specifically, it is computed by assigning
|
||||
a score to each alignment between two input strings and choosing the
|
||||
score of the best alignment, that is, the maximal score.
|
||||
An alignment between two strings is a set of correspondences between the
|
||||
characters of between them, allowing for gaps.
|
||||
|
||||
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
gap_cost: float = 1.0,
|
||||
sim_func: SimFunc = None,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.gap_cost = gap_cost
|
||||
if sim_func:
|
||||
self.sim_func = sim_func
|
||||
else:
|
||||
self.sim_func = self._ident
|
||||
self.external = external
|
||||
|
||||
def minimum(self, *sequences: Sequence[object]) -> float:
|
||||
return -max(map(len, sequences)) * self.gap_cost
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> float:
|
||||
return max(map(len, sequences))
|
||||
|
||||
def distance(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get distance between sequences
|
||||
"""
|
||||
return -1 * self.similarity(*sequences)
|
||||
|
||||
def normalized_distance(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get distance from 0 to 1
|
||||
"""
|
||||
minimum = self.minimum(*sequences)
|
||||
maximum = self.maximum(*sequences)
|
||||
if maximum == 0:
|
||||
return 0
|
||||
return (self.distance(*sequences) - minimum) / (maximum - minimum)
|
||||
|
||||
def normalized_similarity(self, *sequences: Sequence[object]) -> float:
|
||||
"""Get similarity from 0 to 1
|
||||
"""
|
||||
minimum = self.minimum(*sequences)
|
||||
maximum = self.maximum(*sequences)
|
||||
if maximum == 0:
|
||||
return 1
|
||||
return (self.similarity(*sequences) - minimum) / (maximum * 2)
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||||
if not numpy:
|
||||
raise ImportError('Please, install numpy for Needleman-Wunsch measure')
|
||||
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
# result = self.quick_answer(s1, s2)
|
||||
# if result is not None:
|
||||
# return result * self.maximum(s1, s2)
|
||||
|
||||
dist_mat = numpy.zeros(
|
||||
(len(s1) + 1, len(s2) + 1),
|
||||
dtype=float,
|
||||
)
|
||||
# DP initialization
|
||||
for i in range(len(s1) + 1):
|
||||
dist_mat[i, 0] = -(i * self.gap_cost)
|
||||
# DP initialization
|
||||
for j in range(len(s2) + 1):
|
||||
dist_mat[0, j] = -(j * self.gap_cost)
|
||||
# Needleman-Wunsch DP calculation
|
||||
for i, c1 in enumerate(s1, 1):
|
||||
for j, c2 in enumerate(s2, 1):
|
||||
match = dist_mat[i - 1, j - 1] + self.sim_func(c1, c2)
|
||||
delete = dist_mat[i - 1, j] - self.gap_cost
|
||||
insert = dist_mat[i, j - 1] - self.gap_cost
|
||||
dist_mat[i, j] = max(match, delete, insert)
|
||||
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
|
||||
|
||||
|
||||
class SmithWaterman(_BaseSimilarity):
|
||||
"""
|
||||
Computes the Smith-Waterman measure between two strings.
|
||||
The Smith-Waterman algorithm performs local sequence alignment;
|
||||
that is, for determining similar regions between two strings.
|
||||
Instead of looking at the total sequence, the Smith-Waterman algorithm compares
|
||||
segments of all possible lengths and optimizes the similarity measure.
|
||||
|
||||
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/smith-waterman.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
gap_cost: float = 1.0,
|
||||
sim_func: SimFunc = None,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.gap_cost = gap_cost
|
||||
self.sim_func = sim_func or self._ident
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> int:
|
||||
return min(map(len, sequences))
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||||
if not numpy:
|
||||
raise ImportError('Please, install numpy for Smith-Waterman measure')
|
||||
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
dist_mat = numpy.zeros(
|
||||
(len(s1) + 1, len(s2) + 1),
|
||||
dtype=float,
|
||||
)
|
||||
for i, sc1 in enumerate(s1, start=1):
|
||||
for j, sc2 in enumerate(s2, start=1):
|
||||
# The score for substituting the letter a[i - 1] for b[j - 1].
|
||||
# Generally low for mismatch, high for match.
|
||||
match = dist_mat[i - 1, j - 1] + self.sim_func(sc1, sc2)
|
||||
# The scores for for introducing extra letters in one of the strings
|
||||
# (or by symmetry, deleting them from the other).
|
||||
delete = dist_mat[i - 1, j] - self.gap_cost
|
||||
insert = dist_mat[i, j - 1] - self.gap_cost
|
||||
dist_mat[i, j] = max(0, match, delete, insert)
|
||||
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
|
||||
|
||||
|
||||
class Gotoh(NeedlemanWunsch):
|
||||
"""Gotoh score
|
||||
Gotoh's algorithm is essentially Needleman-Wunsch with affine gap
|
||||
penalties:
|
||||
https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
gap_open: int = 1,
|
||||
gap_ext: float = 0.4,
|
||||
sim_func: SimFunc = None,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.gap_open = gap_open
|
||||
self.gap_ext = gap_ext
|
||||
if sim_func:
|
||||
self.sim_func = sim_func
|
||||
else:
|
||||
self.sim_func = self._ident
|
||||
self.external = external
|
||||
|
||||
def minimum(self, *sequences: Sequence[object]) -> int:
|
||||
return -min(map(len, sequences))
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> int:
|
||||
return min(map(len, sequences))
|
||||
|
||||
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
|
||||
if not numpy:
|
||||
raise ImportError('Please, install numpy for Gotoh measure')
|
||||
|
||||
s1, s2 = self._get_sequences(s1, s2)
|
||||
|
||||
# result = self.quick_answer(s1, s2)
|
||||
# if result is not None:
|
||||
# return result * self.maximum(s1, s2)
|
||||
|
||||
len_s1 = len(s1)
|
||||
len_s2 = len(s2)
|
||||
d_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||||
p_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||||
q_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
|
||||
|
||||
d_mat[0, 0] = 0
|
||||
p_mat[0, 0] = float('-inf')
|
||||
q_mat[0, 0] = float('-inf')
|
||||
for i in range(1, len_s1 + 1):
|
||||
d_mat[i, 0] = float('-inf')
|
||||
p_mat[i, 0] = -self.gap_open - self.gap_ext * (i - 1)
|
||||
q_mat[i, 0] = float('-inf')
|
||||
q_mat[i, 1] = -self.gap_open
|
||||
for j in range(1, len_s2 + 1):
|
||||
d_mat[0, j] = float('-inf')
|
||||
p_mat[0, j] = float('-inf')
|
||||
p_mat[1, j] = -self.gap_open
|
||||
q_mat[0, j] = -self.gap_open - self.gap_ext * (j - 1)
|
||||
|
||||
for i, sc1 in enumerate(s1, start=1):
|
||||
for j, sc2 in enumerate(s2, start=1):
|
||||
sim_val = self.sim_func(sc1, sc2)
|
||||
d_mat[i, j] = max(
|
||||
d_mat[i - 1, j - 1] + sim_val,
|
||||
p_mat[i - 1, j - 1] + sim_val,
|
||||
q_mat[i - 1, j - 1] + sim_val,
|
||||
)
|
||||
p_mat[i, j] = max(
|
||||
d_mat[i - 1, j] - self.gap_open,
|
||||
p_mat[i - 1, j] - self.gap_ext,
|
||||
)
|
||||
q_mat[i, j] = max(
|
||||
d_mat[i, j - 1] - self.gap_open,
|
||||
q_mat[i, j - 1] - self.gap_ext,
|
||||
)
|
||||
|
||||
i, j = (n - 1 for n in d_mat.shape)
|
||||
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j])
|
||||
|
||||
|
||||
class StrCmp95(_BaseSimilarity):
|
||||
"""strcmp95 similarity
|
||||
|
||||
http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c
|
||||
"""
|
||||
sp_mx: tuple[tuple[str, str], ...] = (
|
||||
('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'),
|
||||
('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'),
|
||||
('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'),
|
||||
('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'),
|
||||
('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'),
|
||||
('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J'),
|
||||
)
|
||||
|
||||
def __init__(self, long_strings: bool = False, external: bool = True) -> None:
|
||||
self.long_strings = long_strings
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> int:
|
||||
return 1
|
||||
|
||||
@staticmethod
|
||||
def _in_range(char) -> bool:
|
||||
return 0 < ord(char) < 91
|
||||
|
||||
def __call__(self, s1: str, s2: str) -> float:
|
||||
s1 = s1.strip().upper()
|
||||
s2 = s2.strip().upper()
|
||||
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
len_s1 = len(s1)
|
||||
len_s2 = len(s2)
|
||||
|
||||
adjwt = defaultdict(int)
|
||||
|
||||
# Initialize the adjwt array on the first call to the function only.
|
||||
# The adjwt array is used to give partial credit for characters that
|
||||
# may be errors due to known phonetic or character recognition errors.
|
||||
# A typical example is to match the letter "O" with the number "0"
|
||||
for c1, c2 in self.sp_mx:
|
||||
adjwt[c1, c2] = 3
|
||||
adjwt[c2, c1] = 3
|
||||
|
||||
if len_s1 > len_s2:
|
||||
search_range = len_s1
|
||||
minv = len_s2
|
||||
else:
|
||||
search_range = len_s2
|
||||
minv = len_s1
|
||||
|
||||
# Blank out the flags
|
||||
s1_flag = [0] * search_range
|
||||
s2_flag = [0] * search_range
|
||||
search_range = max(0, search_range // 2 - 1)
|
||||
|
||||
# Looking only within the search range, count and flag the matched pairs.
|
||||
num_com = 0
|
||||
yl1 = len_s2 - 1
|
||||
for i, sc1 in enumerate(s1):
|
||||
lowlim = max(i - search_range, 0)
|
||||
hilim = min(i + search_range, yl1)
|
||||
for j in range(lowlim, hilim + 1):
|
||||
if s2_flag[j] == 0 and s2[j] == sc1:
|
||||
s2_flag[j] = 1
|
||||
s1_flag[i] = 1
|
||||
num_com += 1
|
||||
break
|
||||
|
||||
# If no characters in common - return
|
||||
if num_com == 0:
|
||||
return 0.0
|
||||
|
||||
# Count the number of transpositions
|
||||
k = n_trans = 0
|
||||
for i, sc1 in enumerate(s1):
|
||||
if not s1_flag[i]:
|
||||
continue
|
||||
for j in range(k, len_s2):
|
||||
if s2_flag[j] != 0:
|
||||
k = j + 1
|
||||
break
|
||||
if sc1 != s2[j]:
|
||||
n_trans += 1
|
||||
n_trans = n_trans // 2
|
||||
|
||||
# Adjust for similarities in unmatched characters
|
||||
n_simi = 0
|
||||
if minv > num_com:
|
||||
for i in range(len_s1):
|
||||
if s1_flag[i] != 0:
|
||||
continue
|
||||
if not self._in_range(s1[i]):
|
||||
continue
|
||||
for j in range(len_s2):
|
||||
if s2_flag[j] != 0:
|
||||
continue
|
||||
if not self._in_range(s2[j]):
|
||||
continue
|
||||
if (s1[i], s2[j]) not in adjwt:
|
||||
continue
|
||||
n_simi += adjwt[s1[i], s2[j]]
|
||||
s2_flag[j] = 2
|
||||
break
|
||||
num_sim = n_simi / 10.0 + num_com
|
||||
|
||||
# Main weight computation
|
||||
weight = num_sim / len_s1 + num_sim / len_s2
|
||||
weight += (num_com - n_trans) / num_com
|
||||
weight = weight / 3.0
|
||||
|
||||
# Continue to boost the weight if the strings are similar
|
||||
if weight <= 0.7:
|
||||
return weight
|
||||
|
||||
# Adjust for having up to the first 4 characters in common
|
||||
j = min(minv, 4)
|
||||
i = 0
|
||||
for sc1, sc2 in zip(s1, s2):
|
||||
if i >= j:
|
||||
break
|
||||
if sc1 != sc2:
|
||||
break
|
||||
if sc1.isdigit():
|
||||
break
|
||||
i += 1
|
||||
if i:
|
||||
weight += i * 0.1 * (1.0 - weight)
|
||||
|
||||
# Optionally adjust for long strings.
|
||||
|
||||
# After agreeing beginning chars, at least two more must agree and
|
||||
# the agreeing characters must be > .5 of remaining characters.
|
||||
if not self.long_strings:
|
||||
return weight
|
||||
if minv <= 4:
|
||||
return weight
|
||||
if num_com <= i + 1 or 2 * num_com < minv + i:
|
||||
return weight
|
||||
if s1[0].isdigit():
|
||||
return weight
|
||||
res = (num_com - i - 1) / (len_s1 + len_s2 - i * 2 + 2)
|
||||
weight += (1.0 - weight) * res
|
||||
return weight
|
||||
|
||||
|
||||
class MLIPNS(_BaseSimilarity):
|
||||
"""
|
||||
Compute the Hamming distance between the two or more sequences.
|
||||
The Hamming distance is the number of differing items in ordered sequences.
|
||||
|
||||
http://www.sial.iias.spb.su/files/386-386-1-PB.pdf
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/mlipns.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, threshold: float = 0.25,
|
||||
maxmismatches: int = 2,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.threshold = threshold
|
||||
self.maxmismatches = maxmismatches
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence[object]) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence[object]) -> float:
|
||||
sequences = self._get_sequences(*sequences)
|
||||
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
mismatches = 0
|
||||
ham = Hamming()(*sequences)
|
||||
maxlen = max(map(len, sequences))
|
||||
while all(sequences) and mismatches <= self.maxmismatches:
|
||||
if not maxlen:
|
||||
return 1
|
||||
if 1 - (maxlen - ham) / maxlen <= self.threshold:
|
||||
return 1
|
||||
mismatches += 1
|
||||
ham -= 1
|
||||
maxlen -= 1
|
||||
|
||||
if not maxlen:
|
||||
return 1
|
||||
return 0
|
||||
|
||||
|
||||
hamming = Hamming()
|
||||
levenshtein = Levenshtein()
|
||||
damerau = damerau_levenshtein = DamerauLevenshtein()
|
||||
jaro = Jaro()
|
||||
jaro_winkler = JaroWinkler()
|
||||
needleman_wunsch = NeedlemanWunsch()
|
||||
smith_waterman = SmithWaterman()
|
||||
gotoh = Gotoh()
|
||||
strcmp95 = StrCmp95()
|
||||
mlipns = MLIPNS()
|
179
libs/textdistance/algorithms/phonetic.py
Normal file
179
libs/textdistance/algorithms/phonetic.py
Normal file
|
@ -0,0 +1,179 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from collections import defaultdict
|
||||
from itertools import groupby, zip_longest
|
||||
from typing import Any, Iterator, Sequence, TypeVar
|
||||
|
||||
# app
|
||||
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||||
|
||||
|
||||
try:
|
||||
# external
|
||||
import numpy
|
||||
except ImportError:
|
||||
numpy = None # type: ignore[assignment]
|
||||
|
||||
|
||||
__all__ = [
|
||||
'MRA', 'Editex',
|
||||
'mra', 'editex',
|
||||
]
|
||||
T = TypeVar('T')
|
||||
|
||||
|
||||
class MRA(_BaseSimilarity):
|
||||
"""Western Airlines Surname Match Rating Algorithm comparison rating
|
||||
https://en.wikipedia.org/wiki/Match_rating_approach
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/mra.js
|
||||
"""
|
||||
|
||||
def maximum(self, *sequences: str) -> int:
|
||||
sequences = [list(self._calc_mra(s)) for s in sequences]
|
||||
return max(map(len, sequences))
|
||||
|
||||
def _calc_mra(self, word: str) -> str:
|
||||
if not word:
|
||||
return word
|
||||
word = word.upper()
|
||||
word = word[0] + ''.join(c for c in word[1:] if c not in 'AEIOU')
|
||||
# remove repeats like an UNIX uniq
|
||||
word = ''.join(char for char, _ in groupby(word))
|
||||
if len(word) > 6:
|
||||
return word[:3] + word[-3:]
|
||||
return word
|
||||
|
||||
def __call__(self, *sequences: str) -> int:
|
||||
if not all(sequences):
|
||||
return 0
|
||||
sequences = [list(self._calc_mra(s)) for s in sequences]
|
||||
lengths = list(map(len, sequences))
|
||||
count = len(lengths)
|
||||
max_length = max(lengths)
|
||||
if abs(max_length - min(lengths)) > count:
|
||||
return 0
|
||||
|
||||
for _ in range(count):
|
||||
new_sequences = []
|
||||
minlen = min(lengths)
|
||||
for chars in zip(*sequences):
|
||||
if not self._ident(*chars):
|
||||
new_sequences.append(chars)
|
||||
new_sequences = map(list, zip(*new_sequences))
|
||||
# update sequences
|
||||
ss: Iterator[tuple[Any, Any]]
|
||||
ss = zip_longest(new_sequences, sequences, fillvalue=list())
|
||||
sequences = [s1 + s2[minlen:] for s1, s2 in ss]
|
||||
# update lengths
|
||||
lengths = list(map(len, sequences))
|
||||
|
||||
if not lengths:
|
||||
return max_length
|
||||
return max_length - max(lengths)
|
||||
|
||||
|
||||
class Editex(_Base):
|
||||
"""
|
||||
https://anhaidgroup.github.io/py_stringmatching/v0.3.x/Editex.html
|
||||
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
|
||||
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.2138&rep=rep1&type=pdf
|
||||
https://github.com/chrislit/blob/master/abydos/distance/_editex.py
|
||||
https://habr.com/ru/post/331174/ (RUS)
|
||||
"""
|
||||
groups: tuple[frozenset[str], ...] = (
|
||||
frozenset('AEIOUY'),
|
||||
frozenset('BP'),
|
||||
frozenset('CKQ'),
|
||||
frozenset('DT'),
|
||||
frozenset('LR'),
|
||||
frozenset('MN'),
|
||||
frozenset('GJ'),
|
||||
frozenset('FPV'),
|
||||
frozenset('SXZ'),
|
||||
frozenset('CSZ'),
|
||||
)
|
||||
ungrouped = frozenset('HW') # all letters in alphabet that not presented in `grouped`
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
local: bool = False,
|
||||
match_cost: int = 0,
|
||||
group_cost: int = 1,
|
||||
mismatch_cost: int = 2,
|
||||
groups: tuple[frozenset[str], ...] = None,
|
||||
ungrouped: frozenset[str] = None,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
# Ensure that match_cost <= group_cost <= mismatch_cost
|
||||
self.match_cost = match_cost
|
||||
self.group_cost = max(group_cost, self.match_cost)
|
||||
self.mismatch_cost = max(mismatch_cost, self.group_cost)
|
||||
self.local = local
|
||||
self.external = external
|
||||
|
||||
if groups is not None:
|
||||
if ungrouped is None:
|
||||
raise ValueError('`ungrouped` argument required with `groups`')
|
||||
self.groups = groups
|
||||
self.ungrouped = ungrouped
|
||||
self.grouped = frozenset.union(*self.groups)
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return max(map(len, sequences)) * self.mismatch_cost
|
||||
|
||||
def r_cost(self, *elements: str) -> int:
|
||||
if self._ident(*elements):
|
||||
return self.match_cost
|
||||
if any(map(lambda x: x not in self.grouped, elements)):
|
||||
return self.mismatch_cost
|
||||
for group in self.groups:
|
||||
if all(map(lambda x: x in group, elements)):
|
||||
return self.group_cost
|
||||
return self.mismatch_cost
|
||||
|
||||
def d_cost(self, *elements: str) -> int:
|
||||
if not self._ident(*elements) and elements[0] in self.ungrouped:
|
||||
return self.group_cost
|
||||
return self.r_cost(*elements)
|
||||
|
||||
def __call__(self, s1: str, s2: str) -> float:
|
||||
result = self.quick_answer(s1, s2)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
# must do `upper` before getting length because some one-char lowercase glyphs
|
||||
# are represented as two chars in uppercase.
|
||||
# This might result in a distance that is greater than the maximum
|
||||
# input sequence length, though, so we save that maximum first.
|
||||
max_length = self.maximum(s1, s2)
|
||||
s1 = ' ' + s1.upper()
|
||||
s2 = ' ' + s2.upper()
|
||||
len_s1 = len(s1) - 1
|
||||
len_s2 = len(s2) - 1
|
||||
d_mat: Any
|
||||
if numpy:
|
||||
d_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=int)
|
||||
else:
|
||||
d_mat = defaultdict(lambda: defaultdict(int))
|
||||
|
||||
if not self.local:
|
||||
for i in range(1, len_s1 + 1):
|
||||
d_mat[i][0] = d_mat[i - 1][0] + self.d_cost(s1[i - 1], s1[i])
|
||||
for j in range(1, len_s2 + 1):
|
||||
d_mat[0][j] = d_mat[0][j - 1] + self.d_cost(s2[j - 1], s2[j])
|
||||
|
||||
for i, (cs1_prev, cs1_curr) in enumerate(zip(s1, s1[1:]), start=1):
|
||||
for j, (cs2_prev, cs2_curr) in enumerate(zip(s2, s2[1:]), start=1):
|
||||
d_mat[i][j] = min(
|
||||
d_mat[i - 1][j] + self.d_cost(cs1_prev, cs1_curr),
|
||||
d_mat[i][j - 1] + self.d_cost(cs2_prev, cs2_curr),
|
||||
d_mat[i - 1][j - 1] + self.r_cost(cs1_curr, cs2_curr),
|
||||
)
|
||||
|
||||
distance = d_mat[len_s1][len_s2]
|
||||
return min(distance, max_length)
|
||||
|
||||
|
||||
mra = MRA()
|
||||
editex = Editex()
|
186
libs/textdistance/algorithms/sequence_based.py
Normal file
186
libs/textdistance/algorithms/sequence_based.py
Normal file
|
@ -0,0 +1,186 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from difflib import SequenceMatcher as _SequenceMatcher
|
||||
from typing import Any
|
||||
|
||||
# app
|
||||
from ..utils import find_ngrams
|
||||
from .base import BaseSimilarity as _BaseSimilarity
|
||||
from .types import TestFunc
|
||||
|
||||
|
||||
try:
|
||||
# external
|
||||
import numpy
|
||||
except ImportError:
|
||||
# built-in
|
||||
from array import array
|
||||
numpy = None # type: ignore[assignment]
|
||||
|
||||
|
||||
__all__ = [
|
||||
'lcsseq', 'lcsstr', 'ratcliff_obershelp',
|
||||
'LCSSeq', 'LCSStr', 'RatcliffObershelp',
|
||||
]
|
||||
|
||||
|
||||
class LCSSeq(_BaseSimilarity):
|
||||
"""longest common subsequence similarity
|
||||
|
||||
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
test_func: TestFunc = None,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.test_func = test_func or self._ident
|
||||
self.external = external
|
||||
|
||||
def _dynamic(self, seq1: str, seq2: str) -> str:
|
||||
"""
|
||||
https://github.com/chrislit/abydos/blob/master/abydos/distance/_lcsseq.py
|
||||
http://www.dis.uniroma1.it/~bonifaci/algo/LCSSEQ.py
|
||||
http://rosettacode.org/wiki/Longest_common_subsequence#Dynamic_Programming_8
|
||||
"""
|
||||
lengths: Any
|
||||
if numpy:
|
||||
lengths = numpy.zeros((len(seq1) + 1, len(seq2) + 1), dtype=int)
|
||||
else:
|
||||
lengths = [array('L', [0] * (len(seq2) + 1)) for _ in range(len(seq1) + 1)]
|
||||
|
||||
# row 0 and column 0 are initialized to 0 already
|
||||
for i, char1 in enumerate(seq1):
|
||||
for j, char2 in enumerate(seq2):
|
||||
if char1 == char2:
|
||||
lengths[i + 1][j + 1] = lengths[i][j] + 1
|
||||
else:
|
||||
lengths[i + 1][j + 1] = max(lengths[i + 1][j], lengths[i][j + 1])
|
||||
|
||||
# read the substring out from the matrix
|
||||
result = ''
|
||||
i, j = len(seq1), len(seq2)
|
||||
while i != 0 and j != 0:
|
||||
if lengths[i][j] == lengths[i - 1][j]:
|
||||
i -= 1
|
||||
elif lengths[i][j] == lengths[i][j - 1]:
|
||||
j -= 1
|
||||
else:
|
||||
assert seq1[i - 1] == seq2[j - 1]
|
||||
result = seq1[i - 1] + result
|
||||
i -= 1
|
||||
j -= 1
|
||||
return result
|
||||
|
||||
def _recursive(self, *sequences: str) -> str:
|
||||
if not all(sequences):
|
||||
return type(sequences[0])() # empty sequence
|
||||
if self.test_func(*[s[-1] for s in sequences]):
|
||||
c = sequences[0][-1]
|
||||
sequences = tuple(s[:-1] for s in sequences)
|
||||
return self(*sequences) + c
|
||||
m = type(sequences[0])() # empty sequence
|
||||
for i, s in enumerate(sequences):
|
||||
ss = sequences[:i] + (s[:-1], ) + sequences[i + 1:]
|
||||
m = max([self(*ss), m], key=len)
|
||||
return m
|
||||
|
||||
def __call__(self, *sequences: str) -> str:
|
||||
if not sequences:
|
||||
return ''
|
||||
sequences = self._get_sequences(*sequences)
|
||||
if len(sequences) == 2:
|
||||
return self._dynamic(*sequences)
|
||||
else:
|
||||
return self._recursive(*sequences)
|
||||
|
||||
def similarity(self, *sequences) -> int:
|
||||
return len(self(*sequences))
|
||||
|
||||
|
||||
class LCSStr(_BaseSimilarity):
|
||||
"""longest common substring similarity
|
||||
"""
|
||||
|
||||
def _standart(self, s1: str, s2: str) -> str:
|
||||
matcher = _SequenceMatcher(a=s1, b=s2)
|
||||
match = matcher.find_longest_match(0, len(s1), 0, len(s2))
|
||||
return s1[match.a: match.a + match.size]
|
||||
|
||||
def _custom(self, *sequences: str) -> str:
|
||||
short = min(sequences, key=len)
|
||||
length = len(short)
|
||||
for n in range(length, 0, -1):
|
||||
for subseq in find_ngrams(short, n):
|
||||
joined = ''.join(subseq)
|
||||
for seq in sequences:
|
||||
if joined not in seq:
|
||||
break
|
||||
else:
|
||||
return joined
|
||||
return type(short)() # empty sequence
|
||||
|
||||
def __call__(self, *sequences: str) -> str:
|
||||
if not all(sequences):
|
||||
return ''
|
||||
length = len(sequences)
|
||||
if length == 0:
|
||||
return ''
|
||||
if length == 1:
|
||||
return sequences[0]
|
||||
|
||||
sequences = self._get_sequences(*sequences)
|
||||
if length == 2 and max(map(len, sequences)) < 200:
|
||||
return self._standart(*sequences)
|
||||
return self._custom(*sequences)
|
||||
|
||||
def similarity(self, *sequences: str) -> int:
|
||||
return len(self(*sequences))
|
||||
|
||||
|
||||
class RatcliffObershelp(_BaseSimilarity):
|
||||
"""Ratcliff-Obershelp similarity
|
||||
This follows the Ratcliff-Obershelp algorithm to derive a similarity
|
||||
measure:
|
||||
1. Find the length of the longest common substring in sequences.
|
||||
2. Recurse on the strings to the left & right of each this substring
|
||||
in sequences. The base case is a 0 length common substring, in which
|
||||
case, return 0. Otherwise, return the sum of the current longest
|
||||
common substring and the left & right recursed sums.
|
||||
3. Multiply this length by 2 and divide by the sum of the lengths of
|
||||
sequences.
|
||||
|
||||
https://en.wikipedia.org/wiki/Gestalt_Pattern_Matching
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/ratcliff-obershelp.js
|
||||
https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
|
||||
"""
|
||||
|
||||
def maximum(self, *sequences: str) -> int:
|
||||
return 1
|
||||
|
||||
def _find(self, *sequences: str) -> int:
|
||||
subseq = LCSStr()(*sequences)
|
||||
length = len(subseq)
|
||||
if length == 0:
|
||||
return 0
|
||||
before = [s[:s.find(subseq)] for s in sequences]
|
||||
after = [s[s.find(subseq) + length:] for s in sequences]
|
||||
return self._find(*before) + length + self._find(*after)
|
||||
|
||||
def __call__(self, *sequences: str) -> float:
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
scount = len(sequences) # sequences count
|
||||
ecount = sum(map(len, sequences)) # elements count
|
||||
sequences = self._get_sequences(*sequences)
|
||||
return scount * self._find(*sequences) / ecount
|
||||
|
||||
|
||||
lcsseq = LCSSeq()
|
||||
lcsstr = LCSStr()
|
||||
ratcliff_obershelp = RatcliffObershelp()
|
127
libs/textdistance/algorithms/simple.py
Normal file
127
libs/textdistance/algorithms/simple.py
Normal file
|
@ -0,0 +1,127 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from itertools import takewhile
|
||||
from typing import Sequence
|
||||
|
||||
# app
|
||||
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||||
from .types import SimFunc
|
||||
|
||||
|
||||
__all__ = [
|
||||
'Prefix', 'Postfix', 'Length', 'Identity', 'Matrix',
|
||||
'prefix', 'postfix', 'length', 'identity', 'matrix',
|
||||
]
|
||||
|
||||
|
||||
class Prefix(_BaseSimilarity):
|
||||
"""prefix similarity
|
||||
"""
|
||||
|
||||
def __init__(self, qval: int = 1, sim_test: SimFunc = None) -> None:
|
||||
self.qval = qval
|
||||
self.sim_test = sim_test or self._ident
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> Sequence:
|
||||
if not sequences:
|
||||
return ''
|
||||
sequences = self._get_sequences(*sequences)
|
||||
|
||||
def test(seq):
|
||||
return self.sim_test(*seq)
|
||||
|
||||
result = [c[0] for c in takewhile(test, zip(*sequences))]
|
||||
|
||||
s = sequences[0]
|
||||
if isinstance(s, str):
|
||||
return ''.join(result)
|
||||
if isinstance(s, bytes):
|
||||
return b''.join(result)
|
||||
return result
|
||||
|
||||
def similarity(self, *sequences: Sequence) -> int:
|
||||
return len(self(*sequences))
|
||||
|
||||
|
||||
class Postfix(Prefix):
|
||||
"""postfix similarity
|
||||
"""
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> Sequence:
|
||||
s = sequences[0]
|
||||
sequences = [list(reversed(s)) for s in sequences]
|
||||
result = reversed(super().__call__(*sequences))
|
||||
if isinstance(s, str):
|
||||
return ''.join(result)
|
||||
if isinstance(s, bytes):
|
||||
return b''.join(result)
|
||||
return list(result)
|
||||
|
||||
|
||||
class Length(_Base):
|
||||
"""Length distance
|
||||
"""
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> int:
|
||||
lengths = list(map(len, sequences))
|
||||
return max(lengths) - min(lengths)
|
||||
|
||||
|
||||
class Identity(_BaseSimilarity):
|
||||
"""Identity similarity
|
||||
"""
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> int:
|
||||
return int(self._ident(*sequences))
|
||||
|
||||
|
||||
class Matrix(_BaseSimilarity):
|
||||
"""Matrix similarity
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mat=None,
|
||||
mismatch_cost: int = 0,
|
||||
match_cost: int = 1,
|
||||
symmetric: bool = True,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.mat = mat
|
||||
self.mismatch_cost = mismatch_cost
|
||||
self.match_cost = match_cost
|
||||
self.symmetric = symmetric
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return self.match_cost
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> int:
|
||||
if not self.mat:
|
||||
if self._ident(*sequences):
|
||||
return self.match_cost
|
||||
return self.mismatch_cost
|
||||
|
||||
# search in matrix
|
||||
if sequences in self.mat:
|
||||
return self.mat[sequences]
|
||||
# search in symmetric matrix
|
||||
if self.symmetric:
|
||||
sequences = tuple(reversed(sequences))
|
||||
if sequences in self.mat:
|
||||
return self.mat[sequences]
|
||||
# if identity then return match_cost
|
||||
if self._ident(*sequences):
|
||||
return self.match_cost
|
||||
# not found
|
||||
return self.mismatch_cost
|
||||
|
||||
|
||||
prefix = Prefix()
|
||||
postfix = Postfix()
|
||||
length = Length()
|
||||
identity = Identity()
|
||||
matrix = Matrix()
|
297
libs/textdistance/algorithms/token_based.py
Normal file
297
libs/textdistance/algorithms/token_based.py
Normal file
|
@ -0,0 +1,297 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from functools import reduce
|
||||
from itertools import islice, permutations, repeat
|
||||
from math import log
|
||||
from typing import Sequence
|
||||
|
||||
# app
|
||||
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||||
from .edit_based import DamerauLevenshtein
|
||||
|
||||
|
||||
__all__ = [
|
||||
'Jaccard', 'Sorensen', 'Tversky',
|
||||
'Overlap', 'Cosine', 'Tanimoto', 'MongeElkan', 'Bag',
|
||||
|
||||
'jaccard', 'sorensen', 'tversky', 'sorensen_dice',
|
||||
'overlap', 'cosine', 'tanimoto', 'monge_elkan', 'bag',
|
||||
]
|
||||
|
||||
|
||||
class Jaccard(_BaseSimilarity):
|
||||
"""
|
||||
Compute the Jaccard similarity between the two sequences.
|
||||
They should contain hashable items.
|
||||
The return value is a float between 0 and 1, where 1 means equal,
|
||||
and 0 totally different.
|
||||
|
||||
https://en.wikipedia.org/wiki/Jaccard_index
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaccard.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
as_set: bool = False,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.as_set = as_set
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
intersection = self._count_counters(intersection) # int
|
||||
union = self._union_counters(*sequences) # set
|
||||
union = self._count_counters(union) # int
|
||||
return intersection / union
|
||||
|
||||
|
||||
class Sorensen(_BaseSimilarity):
|
||||
"""
|
||||
Compute the Sorensen distance between the two sequences.
|
||||
They should contain hashable items.
|
||||
The return value is a float between 0 and 1, where 0 means equal,
|
||||
and 1 totally different.
|
||||
|
||||
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/dice.js
|
||||
"""
|
||||
|
||||
def __init__(self, qval: int = 1, as_set: bool = False, external: bool = True) -> None:
|
||||
self.qval = qval
|
||||
self.as_set = as_set
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
count = sum(self._count_counters(s) for s in sequences)
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
intersection = self._count_counters(intersection) # int
|
||||
return 2.0 * intersection / count
|
||||
|
||||
|
||||
class Tversky(_BaseSimilarity):
|
||||
"""Tversky index
|
||||
|
||||
https://en.wikipedia.org/wiki/Tversky_index
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/tversky.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
ks: Sequence[float] = None,
|
||||
bias: float | None = None,
|
||||
as_set: bool = False,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.ks = ks or repeat(1)
|
||||
self.bias = bias
|
||||
self.as_set = as_set
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
quick_result = self.quick_answer(*sequences)
|
||||
if quick_result is not None:
|
||||
return quick_result
|
||||
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
intersection = self._count_counters(intersection) # int
|
||||
sequences = [self._count_counters(s) for s in sequences] # ints
|
||||
ks = list(islice(self.ks, len(sequences)))
|
||||
|
||||
if len(sequences) != 2 or self.bias is None:
|
||||
result = intersection
|
||||
for k, s in zip(ks, sequences):
|
||||
result += k * (s - intersection)
|
||||
return intersection / result
|
||||
|
||||
s1, s2 = sequences
|
||||
alpha, beta = ks
|
||||
a_val = min([s1, s2])
|
||||
b_val = max([s1, s2])
|
||||
c_val = intersection + self.bias
|
||||
result = alpha * beta * (a_val - b_val) + b_val * beta
|
||||
return c_val / (result + c_val)
|
||||
|
||||
|
||||
class Overlap(_BaseSimilarity):
|
||||
"""overlap coefficient
|
||||
|
||||
https://en.wikipedia.org/wiki/Overlap_coefficient
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/overlap.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
as_set: bool = False,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.as_set = as_set
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
intersection = self._count_counters(intersection) # int
|
||||
sequences = [self._count_counters(s) for s in sequences] # ints
|
||||
|
||||
return intersection / min(sequences)
|
||||
|
||||
|
||||
class Cosine(_BaseSimilarity):
|
||||
"""cosine similarity (Ochiai coefficient)
|
||||
|
||||
https://en.wikipedia.org/wiki/Cosine_similarity
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/cosine.js
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qval: int = 1,
|
||||
as_set: bool = False,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.qval = qval
|
||||
self.as_set = as_set
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> int:
|
||||
return 1
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
result = self.quick_answer(*sequences)
|
||||
if result is not None:
|
||||
return result
|
||||
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
intersection = self._count_counters(intersection) # int
|
||||
sequences = [self._count_counters(s) for s in sequences] # ints
|
||||
prod = reduce(lambda x, y: x * y, sequences)
|
||||
|
||||
return intersection / pow(prod, 1.0 / len(sequences))
|
||||
|
||||
|
||||
class Tanimoto(Jaccard):
|
||||
"""Tanimoto distance
|
||||
This is identical to the Jaccard similarity coefficient
|
||||
and the Tversky index for alpha=1 and beta=1.
|
||||
"""
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
result = super().__call__(*sequences)
|
||||
if result == 0:
|
||||
return float('-inf')
|
||||
else:
|
||||
return log(result, 2)
|
||||
|
||||
|
||||
class MongeElkan(_BaseSimilarity):
|
||||
"""
|
||||
https://www.academia.edu/200314/Generalized_Monge-Elkan_Method_for_Approximate_Text_String_Comparison
|
||||
http://www.cs.cmu.edu/~wcohen/postscript/kdd-2003-match-ws.pdf
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/monge-elkan.js
|
||||
"""
|
||||
_damerau_levenshtein = DamerauLevenshtein()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
algorithm=_damerau_levenshtein,
|
||||
symmetric: bool = False,
|
||||
qval: int = 1,
|
||||
external: bool = True,
|
||||
) -> None:
|
||||
self.algorithm = algorithm
|
||||
self.symmetric = symmetric
|
||||
self.qval = qval
|
||||
self.external = external
|
||||
|
||||
def maximum(self, *sequences: Sequence) -> float:
|
||||
result = self.algorithm.maximum(sequences)
|
||||
for seq in sequences:
|
||||
if seq:
|
||||
result = max(result, self.algorithm.maximum(*seq))
|
||||
return result
|
||||
|
||||
def _calc(self, seq, *sequences: Sequence) -> float:
|
||||
if not seq:
|
||||
return 0
|
||||
maxes = []
|
||||
for c1 in seq:
|
||||
for s in sequences:
|
||||
max_sim = float('-inf')
|
||||
for c2 in s:
|
||||
max_sim = max(max_sim, self.algorithm.similarity(c1, c2))
|
||||
maxes.append(max_sim)
|
||||
return sum(maxes) / len(seq) / len(maxes)
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
quick_result = self.quick_answer(*sequences)
|
||||
if quick_result is not None:
|
||||
return quick_result
|
||||
sequences = self._get_sequences(*sequences)
|
||||
|
||||
if self.symmetric:
|
||||
result = []
|
||||
for seqs in permutations(sequences):
|
||||
result.append(self._calc(*seqs))
|
||||
return sum(result) / len(result)
|
||||
else:
|
||||
return self._calc(*sequences)
|
||||
|
||||
|
||||
class Bag(_Base):
|
||||
"""Bag distance
|
||||
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/bag.js
|
||||
"""
|
||||
|
||||
def __call__(self, *sequences: Sequence) -> float:
|
||||
sequences = self._get_counters(*sequences) # sets
|
||||
intersection = self._intersect_counters(*sequences) # set
|
||||
return max(self._count_counters(sequence - intersection) for sequence in sequences)
|
||||
|
||||
|
||||
bag = Bag()
|
||||
cosine = Cosine()
|
||||
dice = Sorensen()
|
||||
jaccard = Jaccard()
|
||||
monge_elkan = MongeElkan()
|
||||
overlap = Overlap()
|
||||
sorensen = Sorensen()
|
||||
sorensen_dice = Sorensen()
|
||||
# sorensen_dice = Tversky(ks=[.5, .5])
|
||||
tanimoto = Tanimoto()
|
||||
tversky = Tversky()
|
8
libs/textdistance/algorithms/types.py
Normal file
8
libs/textdistance/algorithms/types.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
|
||||
# built-in
|
||||
from typing import Callable, Optional, TypeVar
|
||||
|
||||
|
||||
T = TypeVar('T')
|
||||
SimFunc = Optional[Callable[[T, T], float]]
|
||||
TestFunc = Optional[Callable[[T, T], bool]]
|
112
libs/textdistance/algorithms/vector_based.py
Normal file
112
libs/textdistance/algorithms/vector_based.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
"""
|
||||
IMPORTANT: it's just draft
|
||||
"""
|
||||
# built-in
|
||||
from functools import reduce
|
||||
from typing import Any
|
||||
|
||||
# app
|
||||
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
|
||||
|
||||
|
||||
try:
|
||||
# external
|
||||
import numpy
|
||||
except ImportError:
|
||||
numpy = None # type: ignore[assignment]
|
||||
|
||||
|
||||
class Chebyshev(_Base):
|
||||
def _numpy(self, s1, s2):
|
||||
s1, s2 = numpy.asarray(s1), numpy.asarray(s2)
|
||||
return max(abs(s1 - s2))
|
||||
|
||||
def _pure(self, s1, s2):
|
||||
return max(abs(e1 - e2) for e1, e2 in zip(s1, s2))
|
||||
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
if numpy:
|
||||
return self._numpy(s1, s2)
|
||||
else:
|
||||
return self._pure(s1, s2)
|
||||
|
||||
|
||||
class Minkowski(_Base):
|
||||
def __init__(self, p: int = 1, weight: int = 1) -> None:
|
||||
if p < 1:
|
||||
raise ValueError('p must be at least 1')
|
||||
self.p = p
|
||||
self.weight = weight
|
||||
|
||||
def _numpy(self, s1, s2):
|
||||
s1, s2 = numpy.asarray(s1), numpy.asarray(s2)
|
||||
result = (self.weight * abs(s1 - s2)) ** self.p
|
||||
return result.sum() ** (1.0 / self.p)
|
||||
|
||||
def _pure(self, s1, s2):
|
||||
result = (self.weight * abs(e1 - e2) for e1, e2 in zip(s1, s2))
|
||||
result = sum(e ** self.p for e in result)
|
||||
return result ** (1.0 / self.p)
|
||||
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
if numpy:
|
||||
return self._numpy(s1, s2)
|
||||
else:
|
||||
return self._pure(s1, s2)
|
||||
|
||||
|
||||
class Manhattan(_Base):
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Euclidean(_Base):
|
||||
def __init__(self, squared: bool = False) -> None:
|
||||
self.squared = squared
|
||||
|
||||
def _numpy(self, s1, s2):
|
||||
s1 = numpy.asarray(s1)
|
||||
s2 = numpy.asarray(s2)
|
||||
q = numpy.matrix(s1 - s2)
|
||||
result = (q * q.T).sum()
|
||||
if self.squared:
|
||||
return result
|
||||
return numpy.sqrt(result)
|
||||
|
||||
def _pure(self, s1, s2) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
if numpy:
|
||||
return self._numpy(s1, s2)
|
||||
else:
|
||||
return self._pure(s1, s2)
|
||||
|
||||
|
||||
class Mahalanobis(_Base):
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class Correlation(_BaseSimilarity):
|
||||
def _numpy(self, *sequences):
|
||||
sequences = [numpy.asarray(s) for s in sequences]
|
||||
ssm = [s - s.mean() for s in sequences]
|
||||
result = reduce(numpy.dot, sequences)
|
||||
for sm in ssm:
|
||||
result /= numpy.sqrt(numpy.dot(sm, sm))
|
||||
return result
|
||||
|
||||
def _pure(self, *sequences):
|
||||
raise NotImplementedError
|
||||
|
||||
def __call__(self, *sequences):
|
||||
if numpy:
|
||||
return self._numpy(*sequences)
|
||||
else:
|
||||
return self._pure(*sequences)
|
||||
|
||||
|
||||
class Kulsinski(_BaseSimilarity):
|
||||
def __call__(self, s1, s2) -> Any:
|
||||
raise NotImplementedError
|
139
libs/textdistance/benchmark.py
Normal file
139
libs/textdistance/benchmark.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
import json
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from timeit import timeit
|
||||
from typing import Iterable, Iterator, NamedTuple
|
||||
|
||||
# external
|
||||
from tabulate import tabulate
|
||||
|
||||
# app
|
||||
from .libraries import LIBRARIES_PATH, prototype
|
||||
|
||||
|
||||
# python3 -m textdistance.benchmark
|
||||
|
||||
|
||||
libraries = prototype.clone()
|
||||
|
||||
|
||||
class Lib(NamedTuple):
|
||||
algorithm: str
|
||||
library: str
|
||||
function: str
|
||||
time: float
|
||||
setup: str
|
||||
|
||||
@property
|
||||
def row(self) -> tuple[str, ...]:
|
||||
time = '' if math.isinf(self.time) else f'{self.time:0.05f}'
|
||||
return (self.algorithm, self.library.split('.')[0], time)
|
||||
|
||||
|
||||
INTERNAL_SETUP = """
|
||||
from textdistance import {} as cls
|
||||
func = cls(external=False)
|
||||
"""
|
||||
|
||||
STMT = """
|
||||
func('text', 'test')
|
||||
func('qwer', 'asdf')
|
||||
func('a' * 15, 'b' * 15)
|
||||
"""
|
||||
|
||||
RUNS = 4000
|
||||
|
||||
|
||||
class Benchmark:
|
||||
@staticmethod
|
||||
def get_installed() -> Iterator[Lib]:
|
||||
for alg in libraries.get_algorithms():
|
||||
for lib in libraries.get_libs(alg):
|
||||
# try load function
|
||||
if not lib.get_function():
|
||||
print(f'WARNING: cannot get func for {lib}')
|
||||
continue
|
||||
# return library info
|
||||
yield Lib(
|
||||
algorithm=alg,
|
||||
library=lib.module_name,
|
||||
function=lib.func_name,
|
||||
time=float('Inf'),
|
||||
setup=lib.setup,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_external_benchmark(installed: Iterable[Lib]) -> Iterator[Lib]:
|
||||
for lib in installed:
|
||||
time = timeit(
|
||||
stmt=STMT,
|
||||
setup=lib.setup,
|
||||
number=RUNS,
|
||||
)
|
||||
yield lib._replace(time=time)
|
||||
|
||||
@staticmethod
|
||||
def get_internal_benchmark() -> Iterator[Lib]:
|
||||
for alg in libraries.get_algorithms():
|
||||
setup = f'func = __import__("textdistance").{alg}(external=False)'
|
||||
yield Lib(
|
||||
algorithm=alg,
|
||||
library='**textdistance**',
|
||||
function=alg,
|
||||
time=timeit(
|
||||
stmt=STMT,
|
||||
setup=setup,
|
||||
number=RUNS,
|
||||
),
|
||||
setup=setup,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def filter_benchmark(
|
||||
external: Iterable[Lib],
|
||||
internal: Iterable[Lib],
|
||||
) -> Iterator[Lib]:
|
||||
limits = {i.algorithm: i.time for i in internal}
|
||||
return filter(lambda x: x.time < limits[x.algorithm], external)
|
||||
|
||||
@staticmethod
|
||||
def get_table(libs: list[Lib]) -> str:
|
||||
table = tabulate(
|
||||
[lib.row for lib in libs],
|
||||
headers=['algorithm', 'library', 'time'],
|
||||
tablefmt='github',
|
||||
)
|
||||
table += f'\nTotal: {len(libs)} libs.\n\n'
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def save(libs: Iterable[Lib]) -> None:
|
||||
data = defaultdict(list)
|
||||
for lib in libs:
|
||||
data[lib.algorithm].append([lib.library, lib.function])
|
||||
with LIBRARIES_PATH.open('w', encoding='utf8') as f:
|
||||
json.dump(obj=data, fp=f, indent=2, sort_keys=True)
|
||||
|
||||
@classmethod
|
||||
def run(cls) -> None:
|
||||
print('# Installed libraries:\n')
|
||||
installed = list(cls.get_installed())
|
||||
installed.sort()
|
||||
print(cls.get_table(installed))
|
||||
|
||||
print('# Benchmarks (with textdistance):\n')
|
||||
benchmark = list(cls.get_external_benchmark(installed))
|
||||
benchmark_internal = list(cls.get_internal_benchmark())
|
||||
benchmark += benchmark_internal
|
||||
benchmark.sort(key=lambda x: (x.algorithm, x.time))
|
||||
print(cls.get_table(benchmark))
|
||||
|
||||
benchmark = list(cls.filter_benchmark(benchmark, benchmark_internal))
|
||||
cls.save(benchmark)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
Benchmark.run()
|
80
libs/textdistance/libraries.json
Normal file
80
libs/textdistance/libraries.json
Normal file
|
@ -0,0 +1,80 @@
|
|||
{
|
||||
"DamerauLevenshtein": [
|
||||
[
|
||||
"rapidfuzz.distance.OSA",
|
||||
"distance"
|
||||
],
|
||||
[
|
||||
"rapidfuzz.distance.DamerauLevenshtein",
|
||||
"distance"
|
||||
],
|
||||
[
|
||||
"jellyfish",
|
||||
"damerau_levenshtein_distance"
|
||||
],
|
||||
[
|
||||
"pyxdameraulevenshtein",
|
||||
"damerau_levenshtein_distance"
|
||||
]
|
||||
],
|
||||
"Hamming": [
|
||||
[
|
||||
"Levenshtein",
|
||||
"hamming"
|
||||
],
|
||||
[
|
||||
"rapidfuzz.distance.Hamming",
|
||||
"distance"
|
||||
],
|
||||
[
|
||||
"jellyfish",
|
||||
"hamming_distance"
|
||||
],
|
||||
[
|
||||
"distance",
|
||||
"hamming"
|
||||
]
|
||||
],
|
||||
"Jaro": [
|
||||
[
|
||||
"rapidfuzz.distance.Jaro",
|
||||
"similarity"
|
||||
],
|
||||
[
|
||||
"jellyfish",
|
||||
"jaro_similarity"
|
||||
]
|
||||
],
|
||||
"JaroWinkler": [
|
||||
[
|
||||
"rapidfuzz.distance.JaroWinkler",
|
||||
"similarity"
|
||||
],
|
||||
[
|
||||
"jellyfish",
|
||||
"jaro_winkler_similarity"
|
||||
]
|
||||
],
|
||||
"Levenshtein": [
|
||||
[
|
||||
"rapidfuzz.distance.Levenshtein",
|
||||
"distance"
|
||||
],
|
||||
[
|
||||
"Levenshtein",
|
||||
"distance"
|
||||
],
|
||||
[
|
||||
"jellyfish",
|
||||
"levenshtein_distance"
|
||||
],
|
||||
[
|
||||
"pylev",
|
||||
"levenshtein"
|
||||
],
|
||||
[
|
||||
"distance",
|
||||
"levenshtein"
|
||||
]
|
||||
]
|
||||
}
|
200
libs/textdistance/libraries.py
Normal file
200
libs/textdistance/libraries.py
Normal file
|
@ -0,0 +1,200 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from importlib import import_module
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Sequence
|
||||
|
||||
|
||||
LIBRARIES_PATH = Path(__file__).parent / 'libraries.json'
|
||||
|
||||
|
||||
class LibrariesManager:
|
||||
libs: defaultdict[str, list[LibraryBase]]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.libs = defaultdict(list)
|
||||
|
||||
def register(self, alg: str, lib: LibraryBase) -> None:
|
||||
"""Register new lib
|
||||
"""
|
||||
self.libs[alg].append(lib)
|
||||
|
||||
def optimize(self) -> None:
|
||||
"""Sort algorithm implementations by speed.
|
||||
"""
|
||||
# load benchmarks results
|
||||
with LIBRARIES_PATH.open('r', encoding='utf8') as f:
|
||||
libs_data: dict = json.load(f)
|
||||
# optimize
|
||||
for alg, libs_names in libs_data.items():
|
||||
libs = self.get_libs(alg)
|
||||
if not libs:
|
||||
continue
|
||||
# drop slow libs
|
||||
self.libs[alg] = [lib for lib in libs if [lib.module_name, lib.func_name] in libs_names]
|
||||
# sort libs by speed
|
||||
self.libs[alg].sort(key=lambda lib: libs_names.index([lib.module_name, lib.func_name]))
|
||||
|
||||
def get_algorithms(self) -> list[str]:
|
||||
"""Get list of available algorithms.
|
||||
"""
|
||||
return list(self.libs.keys())
|
||||
|
||||
def get_libs(self, alg: str) -> list[LibraryBase]:
|
||||
"""Get libs list for algorithm
|
||||
"""
|
||||
if alg not in self.libs:
|
||||
return []
|
||||
return self.libs[alg]
|
||||
|
||||
def clone(self) -> LibrariesManager:
|
||||
"""Clone library manager prototype
|
||||
"""
|
||||
obj = self.__class__()
|
||||
obj.libs = deepcopy(self.libs)
|
||||
return obj
|
||||
|
||||
|
||||
class LibraryBase:
|
||||
func: Callable | None | Any = NotImplemented
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
module_name: str,
|
||||
func_name: str,
|
||||
*,
|
||||
presets: dict[str, Any] | None = None,
|
||||
attr: str | None = None,
|
||||
conditions: dict[str, bool] | None = None,
|
||||
) -> None:
|
||||
self.module_name = module_name
|
||||
self.func_name = func_name
|
||||
self.presets = presets
|
||||
self.conditions = conditions
|
||||
self.attr = attr
|
||||
|
||||
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
||||
# external libs can compare only 2 strings
|
||||
if len(sequences) != 2:
|
||||
return False
|
||||
if not self.conditions:
|
||||
return True
|
||||
for name, value in self.conditions.items():
|
||||
if getattr(obj, name) != value:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def prepare(self, *sequences: Sequence) -> tuple:
|
||||
return sequences
|
||||
|
||||
@property
|
||||
def setup(self) -> str:
|
||||
result = f'from {self.module_name} import {self.func_name} as func'
|
||||
result += '\nfunc = func'
|
||||
if self.presets is not None:
|
||||
result += f'(**{repr(self.presets)})'
|
||||
if self.attr is not None:
|
||||
result += f'.{self.attr}'
|
||||
return result
|
||||
|
||||
def get_function(self) -> Callable | None:
|
||||
if self.func is NotImplemented:
|
||||
# import module
|
||||
try:
|
||||
module = import_module(self.module_name)
|
||||
except ImportError:
|
||||
self.func = None
|
||||
return None
|
||||
|
||||
# get object from module
|
||||
obj = getattr(module, self.func_name)
|
||||
# init class
|
||||
if self.presets is not None:
|
||||
obj = obj(**self.presets)
|
||||
# get needed attribute
|
||||
if self.attr is not None:
|
||||
obj = getattr(obj, self.attr)
|
||||
self.func = obj
|
||||
|
||||
return self.func
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f'{self.module_name}.{self.func_name}'
|
||||
|
||||
|
||||
class TextLibrary(LibraryBase):
|
||||
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
||||
if not super().check_conditions(obj, *sequences):
|
||||
return False
|
||||
|
||||
# compare only by letters
|
||||
if getattr(obj, 'qval', 0) != 1:
|
||||
return False
|
||||
|
||||
# every sequence must be string
|
||||
for seq in sequences:
|
||||
if type(seq) is not str:
|
||||
return False
|
||||
return True
|
||||
|
||||
def prepare(self, *sequences: Sequence) -> tuple:
|
||||
# convert list of letters to string
|
||||
if isinstance(sequences[0], (tuple, list)):
|
||||
sequences = tuple(map(lambda x: ''.join(x), sequences))
|
||||
return sequences
|
||||
|
||||
|
||||
class SameLengthLibrary(LibraryBase):
|
||||
def check_conditions(self, obj: object, *sequences: Sequence) -> bool:
|
||||
if not super().check_conditions(obj, *sequences):
|
||||
return False
|
||||
# compare only same length iterators
|
||||
if min(map(len, sequences)) != max(map(len, sequences)):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
class SameLengthTextLibrary(SameLengthLibrary, TextLibrary):
|
||||
pass
|
||||
|
||||
|
||||
prototype = LibrariesManager()
|
||||
reg = prototype.register
|
||||
|
||||
alg = 'DamerauLevenshtein'
|
||||
reg(alg, LibraryBase('pyxdameraulevenshtein', 'damerau_levenshtein_distance', conditions=dict(restricted=True)))
|
||||
reg(alg, TextLibrary('jellyfish', 'damerau_levenshtein_distance', conditions=dict(restricted=False)))
|
||||
reg(alg, LibraryBase('rapidfuzz.distance.DamerauLevenshtein', 'distance', conditions=dict(restricted=False)))
|
||||
reg(alg, LibraryBase('rapidfuzz.distance.OSA', 'distance', conditions=dict(restricted=True)))
|
||||
|
||||
alg = 'Hamming'
|
||||
reg(alg, SameLengthLibrary('distance', 'hamming'))
|
||||
reg(alg, SameLengthTextLibrary('Levenshtein', 'hamming'))
|
||||
reg(alg, TextLibrary('jellyfish', 'hamming_distance'))
|
||||
reg(alg, SameLengthLibrary('rapidfuzz.distance.Hamming', 'distance'))
|
||||
|
||||
alg = 'Jaro'
|
||||
reg(alg, TextLibrary('jellyfish', 'jaro_similarity'))
|
||||
reg(alg, LibraryBase('rapidfuzz.distance.Jaro', 'similarity'))
|
||||
# reg(alg, TextLibrary('Levenshtein', 'jaro'))
|
||||
# reg(alg, TextLibrary('py_stringmatching.similarity_measure.jaro', 'jaro'))
|
||||
|
||||
alg = 'JaroWinkler'
|
||||
# reg(alg, LibraryBase('py_stringmatching.similarity_measure.jaro_winkler', 'jaro_winkler'))
|
||||
reg(alg, TextLibrary('jellyfish', 'jaro_winkler_similarity', conditions=dict(winklerize=True)))
|
||||
reg(alg, LibraryBase('rapidfuzz.distance.JaroWinkler', 'similarity', conditions=dict(winklerize=True)))
|
||||
# https://github.com/life4/textdistance/issues/39
|
||||
# reg(alg, TextLibrary('Levenshtein', 'jaro_winkler', conditions=dict(winklerize=True)))
|
||||
|
||||
alg = 'Levenshtein'
|
||||
reg(alg, LibraryBase('distance', 'levenshtein'))
|
||||
reg(alg, LibraryBase('pylev', 'levenshtein'))
|
||||
reg(alg, TextLibrary('jellyfish', 'levenshtein_distance'))
|
||||
reg(alg, TextLibrary('Levenshtein', 'distance'))
|
||||
reg(alg, LibraryBase('rapidfuzz.distance.Levenshtein', 'distance'))
|
||||
# reg(alg, TextLibrary('py_stringmatching.similarity_measure.levenshtein', 'levenshtein'))
|
0
libs/textdistance/py.typed
Normal file
0
libs/textdistance/py.typed
Normal file
28
libs/textdistance/utils.py
Normal file
28
libs/textdistance/utils.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
from __future__ import annotations
|
||||
|
||||
# built-in
|
||||
from itertools import permutations, product
|
||||
from typing import Sequence
|
||||
|
||||
|
||||
__all__ = ['words_combinations', 'find_ngrams']
|
||||
|
||||
|
||||
def words_combinations(f, *texts) -> float:
|
||||
m = float('Inf')
|
||||
# split by words
|
||||
texts = [t.split() for t in texts]
|
||||
# permutations
|
||||
texts = [permutations(words) for words in texts]
|
||||
# combinations
|
||||
for subtexts in product(*texts):
|
||||
if f.equality:
|
||||
words_min_cnt = len(min(subtexts, key=len))
|
||||
subtexts = [t[:words_min_cnt] for t in subtexts]
|
||||
subtexts = [' '.join(t) for t in subtexts]
|
||||
m = min(m, f(*subtexts))
|
||||
return m
|
||||
|
||||
|
||||
def find_ngrams(input_list: Sequence, n: int) -> list[tuple]:
|
||||
return list(zip(*[input_list[i:] for i in range(n)]))
|
|
@ -40,6 +40,7 @@ semver==3.0.2
|
|||
signalrcore==0.9.5
|
||||
simple-websocket==1.0.0
|
||||
sqlalchemy==2.0.27
|
||||
textdistance==4.6.2
|
||||
unidecode==1.3.8
|
||||
waitress==3.0.0
|
||||
whichcraft==0.6.1
|
||||
|
|
Loading…
Reference in a new issue