# -*- Mode: Python -*- # Id: asyncore.py,v 2.51 2000/09/07 22:29:26 rushing Exp # Author: Sam Rushing # ====================================================================== # Copyright 1996 by Sam Rushing # # All Rights Reserved # # Permission to use, copy, modify, and distribute this software and # its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of Sam # Rushing not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN # NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ====================================================================== """Basic infrastructure for asynchronous socket service clients and servers. There are only two ways to have a program on a single processor do "more than one thing at a time". Multi-threaded programming is the simplest and most popular way to do it, but there is another very different technique, that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. it's really only practical if your program is largely I/O bound. If your program is CPU bound, then pre-emptive scheduled threads are probably what you really need. Network servers are rarely CPU-bound, however. If your operating system supports the select() system call in its I/O library (and nearly all do), then you can use it to juggle multiple communication channels at once; doing other work while your I/O is taking place in the "background." Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and control than multi-threaded programming. The module documented here solves many of the difficult problems for you, making the task of building sophisticated high-performance network servers and clients a snap. NB: this is a fork of asyncore from the stdlib that we've (the waitress developers) named 'wasyncore' to ensure forward compatibility, as asyncore in the stdlib will be dropped soon. It is neither a copy of the 2.7 asyncore nor the 3.X asyncore; it is a version compatible with either 2.7 or 3.X. """ from errno import ( EAGAIN, EALREADY, EBADF, ECONNABORTED, ECONNRESET, EINPROGRESS, EINTR, EINVAL, EISCONN, ENOTCONN, EPIPE, ESHUTDOWN, EWOULDBLOCK, errorcode, ) import logging import os import select import socket import sys import time import warnings from . import compat, utilities _DISCONNECTED = frozenset({ECONNRESET, ENOTCONN, ESHUTDOWN, ECONNABORTED, EPIPE, EBADF}) try: socket_map except NameError: socket_map = {} def _strerror(err): try: return os.strerror(err) except (TypeError, ValueError, OverflowError, NameError): return "Unknown error %s" % err class ExitNow(Exception): pass _reraised_exceptions = (ExitNow, KeyboardInterrupt, SystemExit) def read(obj): try: obj.handle_read_event() except _reraised_exceptions: raise except: obj.handle_error() def write(obj): try: obj.handle_write_event() except _reraised_exceptions: raise except: obj.handle_error() def _exception(obj): try: obj.handle_expt_event() except _reraised_exceptions: raise except: obj.handle_error() def readwrite(obj, flags): try: if flags & select.POLLIN: obj.handle_read_event() if flags & select.POLLOUT: obj.handle_write_event() if flags & select.POLLPRI: obj.handle_expt_event() if flags & (select.POLLHUP | select.POLLERR | select.POLLNVAL): obj.handle_close() except OSError as e: if e.args[0] not in _DISCONNECTED: obj.handle_error() else: obj.handle_close() except _reraised_exceptions: raise except: obj.handle_error() def poll(timeout=0.0, map=None): if map is None: # pragma: no cover map = socket_map if map: r = [] w = [] e = [] for fd, obj in list(map.items()): # list() call FBO py3 is_r = obj.readable() is_w = obj.writable() if is_r: r.append(fd) # accepting sockets should not be writable if is_w and not obj.accepting: w.append(fd) if is_r or is_w: e.append(fd) if [] == r == w == e: time.sleep(timeout) return try: r, w, e = select.select(r, w, e, timeout) except OSError as err: if err.args[0] != EINTR: raise else: return for fd in r: obj = map.get(fd) if obj is None: # pragma: no cover continue read(obj) for fd in w: obj = map.get(fd) if obj is None: # pragma: no cover continue write(obj) for fd in e: obj = map.get(fd) if obj is None: # pragma: no cover continue _exception(obj) def poll2(timeout=0.0, map=None): # Use the poll() support added to the select module in Python 2.0 if map is None: # pragma: no cover map = socket_map if timeout is not None: # timeout is in milliseconds timeout = int(timeout * 1000) pollster = select.poll() if map: for fd, obj in list(map.items()): flags = 0 if obj.readable(): flags |= select.POLLIN | select.POLLPRI # accepting sockets should not be writable if obj.writable() and not obj.accepting: flags |= select.POLLOUT if flags: pollster.register(fd, flags) try: r = pollster.poll(timeout) except OSError as err: if err.args[0] != EINTR: raise r = [] for fd, flags in r: obj = map.get(fd) if obj is None: # pragma: no cover continue readwrite(obj, flags) poll3 = poll2 # Alias for backward compatibility def loop(timeout=30.0, use_poll=False, map=None, count=None): if map is None: # pragma: no cover map = socket_map if use_poll and hasattr(select, "poll"): poll_fun = poll2 else: poll_fun = poll if count is None: # pragma: no cover while map: poll_fun(timeout, map) else: while map and count > 0: poll_fun(timeout, map) count = count - 1 def compact_traceback(): t, v, tb = sys.exc_info() tbinfo = [] if not tb: # pragma: no cover raise AssertionError("traceback does not exist") while tb: tbinfo.append( ( tb.tb_frame.f_code.co_filename, tb.tb_frame.f_code.co_name, str(tb.tb_lineno), ) ) tb = tb.tb_next # just to be safe del tb file, function, line = tbinfo[-1] info = " ".join(["[%s|%s|%s]" % x for x in tbinfo]) return (file, function, line), t, v, info class dispatcher: debug = False connected = False accepting = False connecting = False closing = False addr = None ignore_log_types = frozenset({"warning"}) logger = utilities.logger compact_traceback = staticmethod(compact_traceback) # for testing def __init__(self, sock=None, map=None): if map is None: # pragma: no cover self._map = socket_map else: self._map = map self._fileno = None if sock: # Set to nonblocking just to make sure for cases where we # get a socket from a blocking source. sock.setblocking(0) self.set_socket(sock, map) self.connected = True # The constructor no longer requires that the socket # passed be connected. try: self.addr = sock.getpeername() except OSError as err: if err.args[0] in (ENOTCONN, EINVAL): # To handle the case where we got an unconnected # socket. self.connected = False else: # The socket is broken in some unknown way, alert # the user and remove it from the map (to prevent # polling of broken sockets). self.del_channel(map) raise else: self.socket = None def __repr__(self): status = [self.__class__.__module__ + "." + self.__class__.__qualname__] if self.accepting and self.addr: status.append("listening") elif self.connected: status.append("connected") if self.addr is not None: try: status.append("%s:%d" % self.addr) except TypeError: # pragma: no cover status.append(repr(self.addr)) return "<%s at %#x>" % (" ".join(status), id(self)) __str__ = __repr__ def add_channel(self, map=None): # self.log_info('adding channel %s' % self) if map is None: map = self._map map[self._fileno] = self def del_channel(self, map=None): fd = self._fileno if map is None: map = self._map if fd in map: # self.log_info('closing channel %d:%s' % (fd, self)) del map[fd] self._fileno = None def create_socket(self, family=socket.AF_INET, type=socket.SOCK_STREAM): self.family_and_type = family, type sock = socket.socket(family, type) sock.setblocking(0) self.set_socket(sock) def set_socket(self, sock, map=None): self.socket = sock self._fileno = sock.fileno() self.add_channel(map) def set_reuse_addr(self): # try to re-use a server port if possible try: self.socket.setsockopt( socket.SOL_SOCKET, socket.SO_REUSEADDR, self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR) | 1, ) except OSError: pass # ================================================== # predicates for select() # these are used as filters for the lists of sockets # to pass to select(). # ================================================== def readable(self): return True def writable(self): return True # ================================================== # socket object methods. # ================================================== def listen(self, num): self.accepting = True if os.name == "nt" and num > 5: # pragma: no cover num = 5 return self.socket.listen(num) def bind(self, addr): self.addr = addr return self.socket.bind(addr) def connect(self, address): self.connected = False self.connecting = True err = self.socket.connect_ex(address) if ( err in (EINPROGRESS, EALREADY, EWOULDBLOCK) or err == EINVAL and os.name == "nt" ): # pragma: no cover self.addr = address return if err in (0, EISCONN): self.addr = address self.handle_connect_event() else: raise OSError(err, errorcode[err]) def accept(self): # XXX can return either an address pair or None try: conn, addr = self.socket.accept() except TypeError: return None except OSError as why: if why.args[0] in (EWOULDBLOCK, ECONNABORTED, EAGAIN): return None else: raise else: return conn, addr def send(self, data): try: result = self.socket.send(data) return result except OSError as why: if why.args[0] == EWOULDBLOCK: return 0 elif why.args[0] in _DISCONNECTED: self.handle_close() return 0 else: raise def recv(self, buffer_size): try: data = self.socket.recv(buffer_size) if not data: # a closed connection is indicated by signaling # a read condition, and having recv() return 0. self.handle_close() return b"" else: return data except OSError as why: # winsock sometimes raises ENOTCONN if why.args[0] in _DISCONNECTED: self.handle_close() return b"" else: raise def close(self): self.connected = False self.accepting = False self.connecting = False self.del_channel() if self.socket is not None: try: self.socket.close() except OSError as why: if why.args[0] not in (ENOTCONN, EBADF): raise # log and log_info may be overridden to provide more sophisticated # logging and warning methods. In general, log is for 'hit' logging # and 'log_info' is for informational, warning and error logging. def log(self, message): self.logger.log(logging.DEBUG, message) def log_info(self, message, type="info"): severity = { "info": logging.INFO, "warning": logging.WARN, "error": logging.ERROR, } self.logger.log(severity.get(type, logging.INFO), message) def handle_read_event(self): if self.accepting: # accepting sockets are never connected, they "spawn" new # sockets that are connected self.handle_accept() elif not self.connected: if self.connecting: self.handle_connect_event() self.handle_read() else: self.handle_read() def handle_connect_event(self): err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR) if err != 0: raise OSError(err, _strerror(err)) self.handle_connect() self.connected = True self.connecting = False def handle_write_event(self): if self.accepting: # Accepting sockets shouldn't get a write event. # We will pretend it didn't happen. return if not self.connected: if self.connecting: self.handle_connect_event() self.handle_write() def handle_expt_event(self): # handle_expt_event() is called if there might be an error on the # socket, or if there is OOB data # check for the error condition first err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR) if err != 0: # we can get here when select.select() says that there is an # exceptional condition on the socket # since there is an error, we'll go ahead and close the socket # like we would in a subclassed handle_read() that received no # data self.handle_close() else: self.handle_expt() def handle_error(self): nil, t, v, tbinfo = self.compact_traceback() # sometimes a user repr method will crash. try: self_repr = repr(self) except: # pragma: no cover self_repr = "<__repr__(self) failed for object at %0x>" % id(self) self.log_info( "uncaptured python exception, closing channel %s (%s:%s %s)" % (self_repr, t, v, tbinfo), "error", ) self.handle_close() def handle_expt(self): self.log_info("unhandled incoming priority event", "warning") def handle_read(self): self.log_info("unhandled read event", "warning") def handle_write(self): self.log_info("unhandled write event", "warning") def handle_connect(self): self.log_info("unhandled connect event", "warning") def handle_accept(self): pair = self.accept() if pair is not None: self.handle_accepted(*pair) def handle_accepted(self, sock, addr): sock.close() self.log_info("unhandled accepted event", "warning") def handle_close(self): self.log_info("unhandled close event", "warning") self.close() # --------------------------------------------------------------------------- # adds simple buffered output capability, useful for simple clients. # [for more sophisticated usage use asynchat.async_chat] # --------------------------------------------------------------------------- class dispatcher_with_send(dispatcher): def __init__(self, sock=None, map=None): dispatcher.__init__(self, sock, map) self.out_buffer = b"" def initiate_send(self): num_sent = 0 num_sent = dispatcher.send(self, self.out_buffer[:65536]) self.out_buffer = self.out_buffer[num_sent:] handle_write = initiate_send def writable(self): return (not self.connected) or len(self.out_buffer) def send(self, data): if self.debug: # pragma: no cover self.log_info("sending %s" % repr(data)) self.out_buffer = self.out_buffer + data self.initiate_send() def close_all(map=None, ignore_all=False): if map is None: # pragma: no cover map = socket_map for x in list(map.values()): # list() FBO py3 try: x.close() except OSError as x: if x.args[0] == EBADF: pass elif not ignore_all: raise except _reraised_exceptions: raise except: if not ignore_all: raise map.clear() # Asynchronous File I/O: # # After a little research (reading man pages on various unixen, and # digging through the linux kernel), I've determined that select() # isn't meant for doing asynchronous file i/o. # Heartening, though - reading linux/mm/filemap.c shows that linux # supports asynchronous read-ahead. So _MOST_ of the time, the data # will be sitting in memory for us already when we go to read it. # # What other OS's (besides NT) support async file i/o? [VMS?] # # Regardless, this is useful for pipes, and stdin/stdout... if os.name == "posix": class file_wrapper: # Here we override just enough to make a file # look like a socket for the purposes of asyncore. # The passed fd is automatically os.dup()'d def __init__(self, fd): self.fd = os.dup(fd) def __del__(self): if self.fd >= 0: warnings.warn("unclosed file %r" % self, ResourceWarning) self.close() def recv(self, *args): return os.read(self.fd, *args) def send(self, *args): return os.write(self.fd, *args) def getsockopt(self, level, optname, buflen=None): # pragma: no cover if level == socket.SOL_SOCKET and optname == socket.SO_ERROR and not buflen: return 0 raise NotImplementedError( "Only asyncore specific behaviour " "implemented." ) read = recv write = send def close(self): if self.fd < 0: return fd = self.fd self.fd = -1 os.close(fd) def fileno(self): return self.fd class file_dispatcher(dispatcher): def __init__(self, fd, map=None): dispatcher.__init__(self, None, map) self.connected = True try: fd = fd.fileno() except AttributeError: pass self.set_file(fd) # set it to non-blocking mode os.set_blocking(fd, False) def set_file(self, fd): self.socket = file_wrapper(fd) self._fileno = self.socket.fileno() self.add_channel()