mirror of https://github.com/morpheus65535/bazarr
452 lines
16 KiB
Python
452 lines
16 KiB
Python
import warnings
|
|
from base64 import standard_b64encode
|
|
from datetime import datetime, date, time, timedelta
|
|
from decimal import Decimal
|
|
from fractions import Fraction
|
|
from functools import wraps
|
|
from json import JSONEncoder
|
|
from sys import version, stderr
|
|
|
|
from .utils import hashodict, get_module_name_from_object, NoEnumException, NoPandasException, \
|
|
NoNumpyException, str_type, JsonTricksDeprecation, gzip_compress, filtered_wrapper, is_py3
|
|
|
|
|
|
def _fallback_wrapper(encoder):
|
|
"""
|
|
This decorator makes an encoder run only if the current object hasn't been changed yet.
|
|
(Changed-ness is checked with is_changed which is based on identity with `id`).
|
|
"""
|
|
@wraps(encoder)
|
|
def fallback_encoder(obj, is_changed, **kwargs):
|
|
if is_changed:
|
|
return obj
|
|
return encoder(obj, is_changed=is_changed, **kwargs)
|
|
return fallback_encoder
|
|
|
|
|
|
def fallback_ignore_unknown(obj, is_changed=None, fallback_value=None):
|
|
"""
|
|
This encoder returns None if the object isn't changed by another encoder and isn't a primitive.
|
|
"""
|
|
if is_changed:
|
|
return obj
|
|
if obj is None or isinstance(obj, (int, float, str_type, bool, list, dict)):
|
|
return obj
|
|
return fallback_value
|
|
|
|
|
|
class TricksEncoder(JSONEncoder):
|
|
"""
|
|
Encoder that runs any number of encoder functions or instances on
|
|
the objects that are being encoded.
|
|
|
|
Each encoder should make any appropriate changes and return an object,
|
|
changed or not. This will be passes to the other encoders.
|
|
"""
|
|
def __init__(self, obj_encoders=None, silence_typeerror=False, primitives=False, fallback_encoders=(), properties=None, **json_kwargs):
|
|
"""
|
|
:param obj_encoders: An iterable of functions or encoder instances to try.
|
|
:param silence_typeerror: DEPRECATED - If set to True, ignore the TypeErrors that Encoder instances throw (default False).
|
|
"""
|
|
if silence_typeerror and not getattr(TricksEncoder, '_deprecated_silence_typeerror'):
|
|
TricksEncoder._deprecated_silence_typeerror = True
|
|
stderr.write('TricksEncoder.silence_typeerror is deprecated and may be removed in a future version\n')
|
|
self.obj_encoders = []
|
|
if obj_encoders:
|
|
self.obj_encoders = list(obj_encoders)
|
|
self.obj_encoders.extend(_fallback_wrapper(encoder) for encoder in list(fallback_encoders))
|
|
self.obj_encoders = [filtered_wrapper(enc) for enc in self.obj_encoders]
|
|
self.silence_typeerror = silence_typeerror
|
|
self.properties = properties
|
|
self.primitives = primitives
|
|
super(TricksEncoder, self).__init__(**json_kwargs)
|
|
|
|
def default(self, obj, *args, **kwargs):
|
|
"""
|
|
This is the method of JSONEncoders that is called for each object; it calls
|
|
all the encoders with the previous one's output used as input.
|
|
|
|
It works for Encoder instances, but they are expected not to throw
|
|
`TypeError` for unrecognized types (the super method does that by default).
|
|
|
|
It never calls the `super` method so if there are non-primitive types
|
|
left at the end, you'll get an encoding error.
|
|
"""
|
|
prev_id = id(obj)
|
|
for encoder in self.obj_encoders:
|
|
obj = encoder(obj, primitives=self.primitives, is_changed=id(obj) != prev_id, properties=self.properties)
|
|
if id(obj) == prev_id:
|
|
raise TypeError(('Object of type {0:} could not be encoded by {1:} using encoders [{2:s}]. '
|
|
'You can add an encoders for this type using `extra_obj_encoders`. If you want to \'skip\' this '
|
|
'object, consider using `fallback_encoders` like `str` or `lambda o: None`.').format(
|
|
type(obj), self.__class__.__name__, ', '.join(str(encoder) for encoder in self.obj_encoders)))
|
|
return obj
|
|
|
|
|
|
def json_date_time_encode(obj, primitives=False):
|
|
"""
|
|
Encode a date, time, datetime or timedelta to a string of a json dictionary, including optional timezone.
|
|
|
|
:param obj: date/time/datetime/timedelta obj
|
|
:return: (dict) json primitives representation of date, time, datetime or timedelta
|
|
"""
|
|
if primitives and isinstance(obj, (date, time, datetime)):
|
|
return obj.isoformat()
|
|
if isinstance(obj, datetime):
|
|
dct = hashodict([('__datetime__', None), ('year', obj.year), ('month', obj.month),
|
|
('day', obj.day), ('hour', obj.hour), ('minute', obj.minute),
|
|
('second', obj.second), ('microsecond', obj.microsecond)])
|
|
if obj.tzinfo:
|
|
dct['tzinfo'] = obj.tzinfo.zone
|
|
elif isinstance(obj, date):
|
|
dct = hashodict([('__date__', None), ('year', obj.year), ('month', obj.month), ('day', obj.day)])
|
|
elif isinstance(obj, time):
|
|
dct = hashodict([('__time__', None), ('hour', obj.hour), ('minute', obj.minute),
|
|
('second', obj.second), ('microsecond', obj.microsecond)])
|
|
if obj.tzinfo:
|
|
dct['tzinfo'] = obj.tzinfo.zone
|
|
elif isinstance(obj, timedelta):
|
|
if primitives:
|
|
return obj.total_seconds()
|
|
else:
|
|
dct = hashodict([('__timedelta__', None), ('days', obj.days), ('seconds', obj.seconds),
|
|
('microseconds', obj.microseconds)])
|
|
else:
|
|
return obj
|
|
for key, val in tuple(dct.items()):
|
|
if not key.startswith('__') and not val:
|
|
del dct[key]
|
|
return dct
|
|
|
|
|
|
def enum_instance_encode(obj, primitives=False, with_enum_value=False):
|
|
"""Encodes an enum instance to json. Note that it can only be recovered if the environment allows the enum to be
|
|
imported in the same way.
|
|
:param primitives: If true, encode the enum values as primitive (more readable, but cannot be restored automatically).
|
|
:param with_enum_value: If true, the value of the enum is also exported (it is not used during import, as it should be constant).
|
|
"""
|
|
from enum import Enum
|
|
if not isinstance(obj, Enum):
|
|
return obj
|
|
if primitives:
|
|
return {obj.name: obj.value}
|
|
mod = get_module_name_from_object(obj)
|
|
representation = dict(
|
|
__enum__=dict(
|
|
# Don't use __instance_type__ here since enums members cannot be created with __new__
|
|
# Ie we can't rely on class deserialization to read them.
|
|
__enum_instance_type__=[mod, type(obj).__name__],
|
|
name=obj.name,
|
|
),
|
|
)
|
|
if with_enum_value:
|
|
representation['__enum__']['value'] = obj.value
|
|
return representation
|
|
|
|
|
|
def noenum_instance_encode(obj, primitives=False):
|
|
if type(obj.__class__).__name__ == 'EnumMeta':
|
|
raise NoEnumException(('Trying to encode an object of type {0:} which appears to be '
|
|
'an enum, but enum support is not enabled, perhaps it is not installed.').format(type(obj)))
|
|
return obj
|
|
|
|
|
|
def class_instance_encode(obj, primitives=False):
|
|
"""
|
|
Encodes a class instance to json. Note that it can only be recovered if the environment allows the class to be
|
|
imported in the same way.
|
|
"""
|
|
if isinstance(obj, list) or isinstance(obj, dict):
|
|
return obj
|
|
if hasattr(obj, '__class__') and (hasattr(obj, '__dict__') or hasattr(obj, '__slots__')):
|
|
if not hasattr(obj, '__new__'):
|
|
raise TypeError('class "{0:s}" does not have a __new__ method; '.format(obj.__class__) +
|
|
('perhaps it is an old-style class not derived from `object`; add `object` as a base class to encode it.'
|
|
if (version[:2] == '2.') else 'this should not happen in Python3'))
|
|
if type(obj) == type(lambda: 0):
|
|
raise TypeError('instance "{0:}" of class "{1:}" cannot be encoded because it appears to be a lambda or function.'
|
|
.format(obj, obj.__class__))
|
|
try:
|
|
obj.__new__(obj.__class__)
|
|
except TypeError:
|
|
raise TypeError(('instance "{0:}" of class "{1:}" cannot be encoded, perhaps because it\'s __new__ method '
|
|
'cannot be called because it requires extra parameters').format(obj, obj.__class__))
|
|
mod = get_module_name_from_object(obj)
|
|
if mod == 'threading':
|
|
# In Python2, threading objects get serialized, which is probably unsafe
|
|
return obj
|
|
name = obj.__class__.__name__
|
|
if hasattr(obj, '__json_encode__'):
|
|
attrs = obj.__json_encode__()
|
|
if primitives:
|
|
return attrs
|
|
else:
|
|
return hashodict((('__instance_type__', (mod, name)), ('attributes', attrs)))
|
|
dct = hashodict([('__instance_type__',(mod, name))])
|
|
if hasattr(obj, '__slots__'):
|
|
slots = obj.__slots__
|
|
if isinstance(slots, str):
|
|
slots = [slots]
|
|
dct['slots'] = hashodict([])
|
|
for s in slots:
|
|
if s == '__dict__':
|
|
continue
|
|
if s == '__weakref__':
|
|
continue
|
|
dct['slots'][s] = getattr(obj, s)
|
|
if hasattr(obj, '__dict__'):
|
|
dct['attributes'] = hashodict(obj.__dict__)
|
|
if primitives:
|
|
attrs = dct.get('attributes',{})
|
|
attrs.update(dct.get('slots',{}))
|
|
return attrs
|
|
else:
|
|
return dct
|
|
return obj
|
|
|
|
|
|
def json_complex_encode(obj, primitives=False):
|
|
"""
|
|
Encode a complex number as a json dictionary of its real and imaginary part.
|
|
|
|
:param obj: complex number, e.g. `2+1j`
|
|
:return: (dict) json primitives representation of `obj`
|
|
"""
|
|
if isinstance(obj, complex):
|
|
if primitives:
|
|
return [obj.real, obj.imag]
|
|
else:
|
|
return hashodict(__complex__=[obj.real, obj.imag])
|
|
return obj
|
|
|
|
|
|
def bytes_encode(obj, primitives=False):
|
|
"""
|
|
Encode bytes as one of these:
|
|
|
|
* A utf8-string with special `__bytes_utf8__` marking, if the bytes are valid utf8 and primitives is False.
|
|
* A base64 encoded string of the bytes with special `__bytes_b64__` marking, if the bytes are not utf8, or if primitives is True.
|
|
|
|
:param obj: any object, which will be transformed if it is of type bytes
|
|
:return: (dict) json primitives representation of `obj`
|
|
"""
|
|
if isinstance(obj, bytes):
|
|
if not is_py3:
|
|
return obj
|
|
if primitives:
|
|
return hashodict(__bytes_b64__=standard_b64encode(obj).decode('ascii'))
|
|
else:
|
|
try:
|
|
return hashodict(__bytes_utf8__=obj.decode('utf-8'))
|
|
except UnicodeDecodeError:
|
|
return hashodict(__bytes_b64__=standard_b64encode(obj).decode('ascii'))
|
|
return obj
|
|
|
|
|
|
def numeric_types_encode(obj, primitives=False):
|
|
"""
|
|
Encode Decimal and Fraction.
|
|
|
|
:param primitives: Encode decimals and fractions as standard floats. You may lose precision. If you do this, you may need to enable `allow_nan` (decimals always allow NaNs but floats do not).
|
|
"""
|
|
if isinstance(obj, Decimal):
|
|
if primitives:
|
|
return float(obj)
|
|
else:
|
|
return {
|
|
'__decimal__': str(obj.canonical()),
|
|
}
|
|
if isinstance(obj, Fraction):
|
|
if primitives:
|
|
return float(obj)
|
|
else:
|
|
return hashodict((
|
|
('__fraction__', True),
|
|
('numerator', obj.numerator),
|
|
('denominator', obj.denominator),
|
|
))
|
|
return obj
|
|
|
|
|
|
def pathlib_encode(obj, primitives=False):
|
|
from pathlib import Path
|
|
if not isinstance(obj, Path):
|
|
return obj
|
|
|
|
if primitives:
|
|
return str(obj)
|
|
|
|
return {'__pathlib__': str(obj)}
|
|
|
|
|
|
class ClassInstanceEncoder(JSONEncoder):
|
|
"""
|
|
See `class_instance_encoder`.
|
|
"""
|
|
# Not covered in tests since `class_instance_encode` is recommended way.
|
|
def __init__(self, obj, encode_cls_instances=True, **kwargs):
|
|
self.encode_cls_instances = encode_cls_instances
|
|
super(ClassInstanceEncoder, self).__init__(obj, **kwargs)
|
|
|
|
def default(self, obj, *args, **kwargs):
|
|
if self.encode_cls_instances:
|
|
obj = class_instance_encode(obj)
|
|
return super(ClassInstanceEncoder, self).default(obj, *args, **kwargs)
|
|
|
|
|
|
def json_set_encode(obj, primitives=False):
|
|
"""
|
|
Encode python sets as dictionary with key __set__ and a list of the values.
|
|
|
|
Try to sort the set to get a consistent json representation, use arbitrary order if the data is not ordinal.
|
|
"""
|
|
if isinstance(obj, set):
|
|
try:
|
|
repr = sorted(obj)
|
|
except Exception:
|
|
repr = list(obj)
|
|
if primitives:
|
|
return repr
|
|
else:
|
|
return hashodict(__set__=repr)
|
|
return obj
|
|
|
|
|
|
def pandas_encode(obj, primitives=False):
|
|
from pandas import DataFrame, Series
|
|
if isinstance(obj, DataFrame):
|
|
repr = hashodict()
|
|
if not primitives:
|
|
repr['__pandas_dataframe__'] = hashodict((
|
|
('column_order', tuple(obj.columns.values)),
|
|
('types', tuple(str(dt) for dt in obj.dtypes)),
|
|
))
|
|
repr['index'] = tuple(obj.index.values)
|
|
for k, name in enumerate(obj.columns.values):
|
|
repr[name] = tuple(obj.iloc[:, k].values)
|
|
return repr
|
|
if isinstance(obj, Series):
|
|
repr = hashodict()
|
|
if not primitives:
|
|
repr['__pandas_series__'] = hashodict((
|
|
('name', str(obj.name)),
|
|
('type', str(obj.dtype)),
|
|
))
|
|
repr['index'] = tuple(obj.index.values)
|
|
repr['data'] = tuple(obj.values)
|
|
return repr
|
|
return obj
|
|
|
|
|
|
def nopandas_encode(obj):
|
|
if ('DataFrame' in getattr(obj.__class__, '__name__', '') or 'Series' in getattr(obj.__class__, '__name__', '')) \
|
|
and 'pandas.' in getattr(obj.__class__, '__module__', ''):
|
|
raise NoPandasException(('Trying to encode an object of type {0:} which appears to be '
|
|
'a numpy array, but numpy support is not enabled, perhaps it is not installed.').format(type(obj)))
|
|
return obj
|
|
|
|
|
|
def numpy_encode(obj, primitives=False, properties=None):
|
|
"""
|
|
Encodes numpy `ndarray`s as lists with meta data.
|
|
|
|
Encodes numpy scalar types as Python equivalents. Special encoding is not possible,
|
|
because int64 (in py2) and float64 (in py2 and py3) are subclasses of primitives,
|
|
which never reach the encoder.
|
|
|
|
:param primitives: If True, arrays are serialized as (nested) lists without meta info.
|
|
"""
|
|
from numpy import ndarray, generic
|
|
if isinstance(obj, ndarray):
|
|
if primitives:
|
|
return obj.tolist()
|
|
else:
|
|
properties = properties or {}
|
|
use_compact = properties.get('ndarray_compact', None)
|
|
json_compression = bool(properties.get('compression', False))
|
|
if use_compact is None and json_compression and not getattr(numpy_encode, '_warned_compact', False):
|
|
numpy_encode._warned_compact = True
|
|
warnings.warn('storing ndarray in text format while compression in enabled; in the next major version '
|
|
'of json_tricks, the default when using compression will change to compact mode; to already use '
|
|
'that smaller format, pass `properties={"ndarray_compact": True}` to json_tricks.dump; '
|
|
'to silence this warning, pass `properties={"ndarray_compact": False}`; '
|
|
'see issue https://github.com/mverleg/pyjson_tricks/issues/73', JsonTricksDeprecation)
|
|
# Property 'use_compact' may also be an integer, in which case it's the number of
|
|
# elements from which compact storage is used.
|
|
if isinstance(use_compact, int) and not isinstance(use_compact, bool):
|
|
use_compact = obj.size >= use_compact
|
|
if use_compact:
|
|
# If the overall json file is compressed, then don't compress the array.
|
|
data_json = _ndarray_to_bin_str(obj, do_compress=not json_compression)
|
|
else:
|
|
data_json = obj.tolist()
|
|
dct = hashodict((
|
|
('__ndarray__', data_json),
|
|
('dtype', str(obj.dtype)),
|
|
('shape', obj.shape),
|
|
))
|
|
if len(obj.shape) > 1:
|
|
dct['Corder'] = obj.flags['C_CONTIGUOUS']
|
|
return dct
|
|
elif isinstance(obj, generic):
|
|
if NumpyEncoder.SHOW_SCALAR_WARNING:
|
|
NumpyEncoder.SHOW_SCALAR_WARNING = False
|
|
warnings.warn('json-tricks: numpy scalar serialization is experimental and may work differently in future versions')
|
|
return obj.item()
|
|
return obj
|
|
|
|
|
|
def _ndarray_to_bin_str(array, do_compress):
|
|
"""
|
|
From ndarray to base64 encoded, gzipped binary data.
|
|
"""
|
|
from base64 import standard_b64encode
|
|
assert array.flags['C_CONTIGUOUS'], 'only C memory order is (currently) supported for compact ndarray format'
|
|
|
|
original_size = array.size * array.itemsize
|
|
header = 'b64:'
|
|
data = array.data
|
|
if do_compress:
|
|
small = gzip_compress(data, compresslevel=9)
|
|
if len(small) < 0.9 * original_size and len(small) < original_size - 8:
|
|
header = 'b64.gz:'
|
|
data = small
|
|
data = standard_b64encode(data)
|
|
return header + data.decode('ascii')
|
|
|
|
|
|
class NumpyEncoder(ClassInstanceEncoder):
|
|
"""
|
|
JSON encoder for numpy arrays.
|
|
"""
|
|
SHOW_SCALAR_WARNING = True # show a warning that numpy scalar serialization is experimental
|
|
|
|
def default(self, obj, *args, **kwargs):
|
|
"""
|
|
If input object is a ndarray it will be converted into a dict holding
|
|
data type, shape and the data. The object can be restored using json_numpy_obj_hook.
|
|
"""
|
|
warnings.warn('`NumpyEncoder` is deprecated, use `numpy_encode`', JsonTricksDeprecation)
|
|
obj = numpy_encode(obj)
|
|
return super(NumpyEncoder, self).default(obj, *args, **kwargs)
|
|
|
|
|
|
def nonumpy_encode(obj):
|
|
"""
|
|
Raises an error for numpy arrays.
|
|
"""
|
|
if 'ndarray' in getattr(obj.__class__, '__name__', '') and 'numpy.' in getattr(obj.__class__, '__module__', ''):
|
|
raise NoNumpyException(('Trying to encode an object of type {0:} which appears to be '
|
|
'a pandas data stucture, but pandas support is not enabled, perhaps it is not installed.').format(type(obj)))
|
|
return obj
|
|
|
|
|
|
class NoNumpyEncoder(JSONEncoder):
|
|
"""
|
|
See `nonumpy_encode`.
|
|
"""
|
|
def default(self, obj, *args, **kwargs):
|
|
warnings.warn('`NoNumpyEncoder` is deprecated, use `nonumpy_encode`', JsonTricksDeprecation)
|
|
obj = nonumpy_encode(obj)
|
|
return super(NoNumpyEncoder, self).default(obj, *args, **kwargs)
|