bazarr/libs/ffmpeg/dag.py

232 lines
7.6 KiB
Python

from __future__ import unicode_literals
from ._utils import get_hash, get_hash_int
from builtins import object
from collections import namedtuple
class DagNode(object):
"""Node in a directed-acyclic graph (DAG).
Edges:
DagNodes are connected by edges. An edge connects two nodes with a label for each side:
- ``upstream_node``: upstream/parent node
- ``upstream_label``: label on the outgoing side of the upstream node
- ``downstream_node``: downstream/child node
- ``downstream_label``: label on the incoming side of the downstream node
For example, DagNode A may be connected to DagNode B with an edge labelled "foo" on A's side, and "bar" on B's
side:
_____ _____
| | | |
| A >[foo]---[bar]> B |
|_____| |_____|
Edge labels may be integers or strings, and nodes cannot have more than one incoming edge with the same label.
DagNodes may have any number of incoming edges and any number of outgoing edges. DagNodes keep track only of
their incoming edges, but the entire graph structure can be inferred by looking at the furthest downstream
nodes and working backwards.
Hashing:
DagNodes must be hashable, and two nodes are considered to be equivalent if they have the same hash value.
Nodes are immutable, and the hash should remain constant as a result. If a node with new contents is required,
create a new node and throw the old one away.
String representation:
In order for graph visualization tools to show useful information, nodes must be representable as strings. The
``repr`` operator should provide a more or less "full" representation of the node, and the ``short_repr``
property should be a shortened, concise representation.
Again, because nodes are immutable, the string representations should remain constant.
"""
def __hash__(self):
"""Return an integer hash of the node."""
raise NotImplementedError()
def __eq__(self, other):
"""Compare two nodes; implementations should return True if (and only if) hashes match."""
raise NotImplementedError()
def __repr__(self, other):
"""Return a full string representation of the node."""
raise NotImplementedError()
@property
def short_repr(self):
"""Return a partial/concise representation of the node."""
raise NotImplementedError()
@property
def incoming_edge_map(self):
"""Provides information about all incoming edges that connect to this node.
The edge map is a dictionary that maps an ``incoming_label`` to ``(outgoing_node, outgoing_label)``. Note that
implicity, ``incoming_node`` is ``self``. See "Edges" section above.
"""
raise NotImplementedError()
DagEdge = namedtuple(
'DagEdge',
[
'downstream_node',
'downstream_label',
'upstream_node',
'upstream_label',
'upstream_selector',
],
)
def get_incoming_edges(downstream_node, incoming_edge_map):
edges = []
for downstream_label, upstream_info in list(incoming_edge_map.items()):
upstream_node, upstream_label, upstream_selector = upstream_info
edges += [
DagEdge(
downstream_node,
downstream_label,
upstream_node,
upstream_label,
upstream_selector,
)
]
return edges
def get_outgoing_edges(upstream_node, outgoing_edge_map):
edges = []
for upstream_label, downstream_infos in sorted(outgoing_edge_map.items()):
for downstream_info in downstream_infos:
downstream_node, downstream_label, downstream_selector = downstream_info
edges += [
DagEdge(
downstream_node,
downstream_label,
upstream_node,
upstream_label,
downstream_selector,
)
]
return edges
class KwargReprNode(DagNode):
"""A DagNode that can be represented as a set of args+kwargs.
"""
@property
def __upstream_hashes(self):
hashes = []
for downstream_label, upstream_info in list(self.incoming_edge_map.items()):
upstream_node, upstream_label, upstream_selector = upstream_info
hashes += [
hash(x)
for x in [
downstream_label,
upstream_node,
upstream_label,
upstream_selector,
]
]
return hashes
@property
def __inner_hash(self):
props = {'args': self.args, 'kwargs': self.kwargs}
return get_hash(props)
def __get_hash(self):
hashes = self.__upstream_hashes + [self.__inner_hash]
return get_hash_int(hashes)
def __init__(self, incoming_edge_map, name, args, kwargs):
self.__incoming_edge_map = incoming_edge_map
self.name = name
self.args = args
self.kwargs = kwargs
self.__hash = self.__get_hash()
def __hash__(self):
return self.__hash
def __eq__(self, other):
return hash(self) == hash(other)
@property
def short_hash(self):
return '{:x}'.format(abs(hash(self)))[:12]
def long_repr(self, include_hash=True):
formatted_props = ['{!r}'.format(arg) for arg in self.args]
formatted_props += [
'{}={!r}'.format(key, self.kwargs[key]) for key in sorted(self.kwargs)
]
out = '{}({})'.format(self.name, ', '.join(formatted_props))
if include_hash:
out += ' <{}>'.format(self.short_hash)
return out
def __repr__(self):
return self.long_repr()
@property
def incoming_edges(self):
return get_incoming_edges(self, self.incoming_edge_map)
@property
def incoming_edge_map(self):
return self.__incoming_edge_map
@property
def short_repr(self):
return self.name
def topo_sort(downstream_nodes):
marked_nodes = []
sorted_nodes = []
outgoing_edge_maps = {}
def visit(
upstream_node,
upstream_label,
downstream_node,
downstream_label,
downstream_selector=None,
):
if upstream_node in marked_nodes:
raise RuntimeError('Graph is not a DAG')
if downstream_node is not None:
outgoing_edge_map = outgoing_edge_maps.get(upstream_node, {})
outgoing_edge_infos = outgoing_edge_map.get(upstream_label, [])
outgoing_edge_infos += [
(downstream_node, downstream_label, downstream_selector)
]
outgoing_edge_map[upstream_label] = outgoing_edge_infos
outgoing_edge_maps[upstream_node] = outgoing_edge_map
if upstream_node not in sorted_nodes:
marked_nodes.append(upstream_node)
for edge in upstream_node.incoming_edges:
visit(
edge.upstream_node,
edge.upstream_label,
edge.downstream_node,
edge.downstream_label,
edge.upstream_selector,
)
marked_nodes.remove(upstream_node)
sorted_nodes.append(upstream_node)
unmarked_nodes = [(node, None) for node in downstream_nodes]
while unmarked_nodes:
upstream_node, upstream_label = unmarked_nodes.pop()
visit(upstream_node, upstream_label, None, None)
return sorted_nodes, outgoing_edge_maps