mirror of
https://github.com/morpheus65535/bazarr
synced 2025-01-03 21:45:27 +00:00
5749971d67
As we have noted before, bad input data should be no reason to throttle a provider. In this case, if the input language was not supported by whisper, we were raising a ValueError that was never caught and causing an error in the whisper provider for which it was throttled. Instead, we are now detecting this case and logging an error message. However, given that the input language was not one of the 99 currently known to whisper, it's probably a mislabeled audio track. If the user desired output language is English, then we will tell whisper that the input audio is also English and ask it to transcribe it. Whisper does a very good job of transcribing almost anything to English, so it's worth a try. This should address the throttling in issue #2474.
361 lines
12 KiB
Python
361 lines
12 KiB
Python
from __future__ import absolute_import
|
|
import logging
|
|
import time
|
|
from datetime import timedelta
|
|
|
|
from requests import Session
|
|
|
|
from subliminal_patch.subtitle import Subtitle
|
|
from subliminal_patch.providers import Provider
|
|
from subliminal import __short_version__
|
|
from subliminal.exceptions import ConfigurationError
|
|
from subzero.language import Language
|
|
from subliminal.video import Episode, Movie
|
|
|
|
from babelfish.exceptions import LanguageReverseError
|
|
|
|
import ffmpeg
|
|
import functools
|
|
|
|
# These are all the languages Whisper supports.
|
|
# from whisper.tokenizer import LANGUAGES
|
|
|
|
whisper_languages = {
|
|
"en": "english",
|
|
"zh": "chinese",
|
|
"de": "german",
|
|
"es": "spanish",
|
|
"ru": "russian",
|
|
"ko": "korean",
|
|
"fr": "french",
|
|
"ja": "japanese",
|
|
"pt": "portuguese",
|
|
"tr": "turkish",
|
|
"pl": "polish",
|
|
"ca": "catalan",
|
|
"nl": "dutch",
|
|
"ar": "arabic",
|
|
"sv": "swedish",
|
|
"it": "italian",
|
|
"id": "indonesian",
|
|
"hi": "hindi",
|
|
"fi": "finnish",
|
|
"vi": "vietnamese",
|
|
"he": "hebrew",
|
|
"uk": "ukrainian",
|
|
"el": "greek",
|
|
"ms": "malay",
|
|
"cs": "czech",
|
|
"ro": "romanian",
|
|
"da": "danish",
|
|
"hu": "hungarian",
|
|
"ta": "tamil",
|
|
"no": "norwegian",
|
|
"th": "thai",
|
|
"ur": "urdu",
|
|
"hr": "croatian",
|
|
"bg": "bulgarian",
|
|
"lt": "lithuanian",
|
|
"la": "latin",
|
|
"mi": "maori",
|
|
"ml": "malayalam",
|
|
"cy": "welsh",
|
|
"sk": "slovak",
|
|
"te": "telugu",
|
|
"fa": "persian",
|
|
"lv": "latvian",
|
|
"bn": "bengali",
|
|
"sr": "serbian",
|
|
"az": "azerbaijani",
|
|
"sl": "slovenian",
|
|
"kn": "kannada",
|
|
"et": "estonian",
|
|
"mk": "macedonian",
|
|
"br": "breton",
|
|
"eu": "basque",
|
|
"is": "icelandic",
|
|
"hy": "armenian",
|
|
"ne": "nepali",
|
|
"mn": "mongolian",
|
|
"bs": "bosnian",
|
|
"kk": "kazakh",
|
|
"sq": "albanian",
|
|
"sw": "swahili",
|
|
"gl": "galician",
|
|
"mr": "marathi",
|
|
"pa": "punjabi",
|
|
"si": "sinhala",
|
|
"km": "khmer",
|
|
"sn": "shona",
|
|
"yo": "yoruba",
|
|
"so": "somali",
|
|
"af": "afrikaans",
|
|
"oc": "occitan",
|
|
"ka": "georgian",
|
|
"be": "belarusian",
|
|
"tg": "tajik",
|
|
"sd": "sindhi",
|
|
"gu": "gujarati",
|
|
"am": "amharic",
|
|
"yi": "yiddish",
|
|
"lo": "lao",
|
|
"uz": "uzbek",
|
|
"fo": "faroese",
|
|
"ht": "haitian creole",
|
|
"ps": "pashto",
|
|
"tk": "turkmen",
|
|
"nn": "nynorsk",
|
|
"mt": "maltese",
|
|
"sa": "sanskrit",
|
|
"lb": "luxembourgish",
|
|
"my": "myanmar",
|
|
"bo": "tibetan",
|
|
"tl": "tagalog",
|
|
"mg": "malagasy",
|
|
"as": "assamese",
|
|
"tt": "tatar",
|
|
"haw": "hawaiian",
|
|
"ln": "lingala",
|
|
"ha": "hausa",
|
|
"ba": "bashkir",
|
|
"jw": "javanese",
|
|
"su": "sundanese",
|
|
}
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
def set_log_level(newLevel="INFO"):
|
|
newLevel = newLevel.upper()
|
|
# print(f'WhisperAI log level changing from {logging._levelToName[logger.getEffectiveLevel()]} to {newLevel}')
|
|
logger.setLevel(getattr(logging, newLevel))
|
|
|
|
# initialize to default above
|
|
set_log_level()
|
|
|
|
@functools.lru_cache(2)
|
|
def encode_audio_stream(path, ffmpeg_path, audio_stream_language=None):
|
|
logger.debug("Encoding audio stream to WAV with ffmpeg")
|
|
|
|
try:
|
|
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
|
inp = ffmpeg.input(path, threads=0)
|
|
if audio_stream_language:
|
|
logger.debug(f"Whisper will only use the {audio_stream_language} audio stream for {path}")
|
|
inp = inp[f'a:m:language:{audio_stream_language}']
|
|
|
|
out, _ = inp.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=16000) \
|
|
.run(cmd=[ffmpeg_path, "-nostdin"], capture_stdout=True, capture_stderr=True)
|
|
|
|
except ffmpeg.Error as e:
|
|
logger.warning(f"ffmpeg failed to load audio: {e.stderr.decode()}")
|
|
return None
|
|
|
|
logger.debug(f"Finished encoding audio stream in {path} with no errors")
|
|
|
|
return out
|
|
|
|
|
|
def whisper_get_language(code, name):
|
|
# Whisper uses an inconsistent mix of alpha2 and alpha3 language codes
|
|
try:
|
|
return Language.fromalpha2(code)
|
|
except LanguageReverseError:
|
|
return Language.fromname(name)
|
|
|
|
|
|
def whisper_get_language_reverse(alpha3):
|
|
# Returns the whisper language code given an alpha3b language
|
|
for wl in whisper_languages:
|
|
lan = whisper_get_language(wl, whisper_languages[wl])
|
|
if lan.alpha3 == alpha3:
|
|
return wl
|
|
return None
|
|
|
|
def language_from_alpha3(lang):
|
|
name = Language(lang).name
|
|
return name
|
|
|
|
class WhisperAISubtitle(Subtitle):
|
|
'''Whisper AI Subtitle.'''
|
|
provider_name = 'whisperai'
|
|
hash_verifiable = False
|
|
|
|
def __init__(self, language, video):
|
|
super(WhisperAISubtitle, self).__init__(language)
|
|
|
|
self.video = video
|
|
self.task = None
|
|
self.audio_language = None
|
|
self.force_audio_stream = None
|
|
|
|
@property
|
|
def id(self):
|
|
return self.video.original_name
|
|
|
|
def get_matches(self, video):
|
|
matches = set()
|
|
|
|
if isinstance(video, Episode):
|
|
matches.update(["series", "season", "episode"])
|
|
elif isinstance(video, Movie):
|
|
matches.update(["title"])
|
|
|
|
return matches
|
|
|
|
|
|
class WhisperAIProvider(Provider):
|
|
'''Whisper AI Provider.'''
|
|
|
|
languages = set()
|
|
|
|
for lan in whisper_languages:
|
|
languages.update({whisper_get_language(lan, whisper_languages[lan])})
|
|
|
|
video_types = (Episode, Movie)
|
|
|
|
def __init__(self, endpoint=None, response=None, timeout=None, ffmpeg_path=None, loglevel=None):
|
|
set_log_level(loglevel)
|
|
if not endpoint:
|
|
raise ConfigurationError('Whisper Web Service Endpoint must be provided')
|
|
|
|
if not response:
|
|
raise ConfigurationError('Whisper Web Service Connection/response timeout must be provided')
|
|
|
|
if not timeout:
|
|
raise ConfigurationError('Whisper Web Service Transcription/translation timeout must be provided')
|
|
|
|
if not ffmpeg_path:
|
|
raise ConfigurationError("ffmpeg path must be provided")
|
|
|
|
self.endpoint = endpoint.rstrip("/")
|
|
self.response = int(response)
|
|
self.timeout = int(timeout)
|
|
self.session = None
|
|
self.ffmpeg_path = ffmpeg_path
|
|
|
|
def initialize(self):
|
|
self.session = Session()
|
|
self.session.headers['User-Agent'] = 'Subliminal/%s' % __short_version__
|
|
|
|
def terminate(self):
|
|
self.session.close()
|
|
|
|
|
|
@functools.lru_cache(2048)
|
|
def detect_language(self, path) -> Language:
|
|
out = encode_audio_stream(path, self.ffmpeg_path)
|
|
|
|
if out == None:
|
|
logger.info(f"Whisper cannot detect language of {path} because of missing/bad audio track")
|
|
return None
|
|
|
|
r = self.session.post(f"{self.endpoint}/detect-language",
|
|
params={'encode': 'false'},
|
|
files={'audio_file': out},
|
|
timeout=(self.response, self.timeout))
|
|
|
|
logger.debug(f"Whisper detected language of {path} as {r.json()['detected_language']}")
|
|
|
|
return whisper_get_language(r.json()["language_code"], r.json()["detected_language"])
|
|
|
|
def query(self, language, video):
|
|
if language not in self.languages:
|
|
return None
|
|
|
|
sub = WhisperAISubtitle(language, video)
|
|
sub.task = "transcribe"
|
|
|
|
if video.audio_languages and not (list(video.audio_languages)[0] == "und" and len(video.audio_languages) == 1):
|
|
if language.alpha3 in video.audio_languages:
|
|
sub.audio_language = language.alpha3
|
|
if len(list(video.audio_languages)) > 1:
|
|
sub.force_audio_stream = language.alpha3
|
|
else:
|
|
sub.task = "translate"
|
|
|
|
eligible_languages = list(video.audio_languages)
|
|
if len(eligible_languages) > 1:
|
|
if "und" in eligible_languages:
|
|
eligible_languages.remove("und")
|
|
sub.audio_language = eligible_languages[0]
|
|
else:
|
|
# We must detect the language manually
|
|
detected_lang = self.detect_language(video.original_path)
|
|
if detected_lang == None:
|
|
sub.task = "error"
|
|
# tell the user what is wrong
|
|
sub.release_info = "bad/missing audio track - cannot transcribe"
|
|
return sub
|
|
|
|
if detected_lang != language:
|
|
sub.task = "translate"
|
|
|
|
sub.audio_language = detected_lang.alpha3
|
|
|
|
if sub.task == "translate":
|
|
if language.alpha3 != "eng":
|
|
logger.debug(f"Translation only possible from {language} to English")
|
|
return None
|
|
|
|
# tell the user what we are about to do
|
|
sub.release_info = f"{sub.task} {language_from_alpha3(sub.audio_language)} audio -> {language_from_alpha3(language.alpha3)} SRT"
|
|
logger.debug(f"Whisper query: ({video.original_path}): {sub.audio_language} -> {language.alpha3} [TASK: {sub.task}]")
|
|
|
|
return sub
|
|
|
|
def list_subtitles(self, video, languages):
|
|
subtitles = [self.query(l, video) for l in languages]
|
|
return [s for s in subtitles if s is not None]
|
|
|
|
def download_subtitle(self, subtitle: WhisperAISubtitle):
|
|
# Invoke Whisper through the API. This may take a long time depending on the file.
|
|
# TODO: This loads the entire file into memory, find a good way to stream the file in chunks
|
|
|
|
out = None
|
|
if subtitle.task != "error":
|
|
out = encode_audio_stream(subtitle.video.original_path, self.ffmpeg_path, subtitle.force_audio_stream)
|
|
if out == None:
|
|
logger.info(f"Whisper cannot process {subtitle.video.original_path} because of missing/bad audio track")
|
|
subtitle.content = None
|
|
return
|
|
|
|
logger.debug(f'Audio stream length (in WAV format) is {len(out):,} bytes')
|
|
|
|
if subtitle.task == "transcribe":
|
|
output_language = subtitle.audio_language
|
|
else:
|
|
output_language = "eng"
|
|
|
|
input_language = whisper_get_language_reverse(subtitle.audio_language)
|
|
if input_language is None:
|
|
if output_language == "eng":
|
|
# guess that audio track is mislabelled English and let whisper try to transcribe it
|
|
input_language = "en"
|
|
subtitle.task = "transcribe"
|
|
logger.info(f"Whisper treating unsupported audio track language: '{subtitle.audio_language}' as English")
|
|
else:
|
|
logger.info(f"Whisper cannot process {subtitle.video.original_path} because of unsupported audio track language: '{subtitle.audio_language}'")
|
|
subtitle.content = None
|
|
return
|
|
|
|
logger.info(f'Starting WhisperAI {subtitle.task} to {language_from_alpha3(output_language)} for {subtitle.video.original_path}')
|
|
startTime = time.time()
|
|
|
|
r = self.session.post(f"{self.endpoint}/asr",
|
|
params={'task': subtitle.task, 'language': input_language, 'output': 'srt', 'encode': 'false'},
|
|
files={'audio_file': out},
|
|
timeout=(self.response, self.timeout))
|
|
|
|
endTime = time.time()
|
|
elapsedTime = timedelta(seconds=round(endTime - startTime))
|
|
|
|
# for debugging, log if anything got returned
|
|
subtitle_length = len(r.content)
|
|
logger.debug(f'Returned subtitle length is {subtitle_length:,} bytes')
|
|
subtitle_length = min(subtitle_length, 1000)
|
|
if subtitle_length > 0:
|
|
logger.debug(f'First {subtitle_length} bytes of subtitle: {r.content[0:subtitle_length]}')
|
|
|
|
logger.info(f'Completed WhisperAI {subtitle.task} to {language_from_alpha3(output_language)} in {elapsedTime} for {subtitle.video.original_path}')
|
|
|
|
subtitle.content = r.content
|