upgrade bundled zstd to 1.4.4

This commit is contained in:
Thomas Waldmann 2020-03-08 21:01:54 +01:00
parent 108c590c02
commit 99f72beaa5
54 changed files with 5753 additions and 3257 deletions

View File

@ -26,6 +26,8 @@ zstd_sources = [
'lib/compress/hist.c',
'lib/compress/huf_compress.c',
'lib/compress/zstd_compress.c',
'lib/compress/zstd_compress_literals.c',
'lib/compress/zstd_compress_sequences.c',
'lib/compress/zstd_double_fast.c',
'lib/compress/zstd_fast.c',
'lib/compress/zstd_lazy.c',

View File

@ -57,6 +57,8 @@ extern "C" {
=========================================*/
#if defined(__BMI__) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental) */
#elif defined(__ICCARM__)
# include <intrinsics.h>
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
@ -162,7 +164,9 @@ MEM_STATIC unsigned BIT_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# elif defined(__ICCARM__) /* IAR Intrinsic */
return 31 - __CLZ(val);
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
@ -240,9 +244,9 @@ MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
assert(bitC->ptr <= bitC->endPtr);
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
@ -256,6 +260,7 @@ MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;

View File

@ -23,7 +23,7 @@
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
@ -40,7 +40,7 @@
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to elimininate the constant
* parameters. They must be inlined for the compiler to eliminate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
@ -61,11 +61,18 @@
# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR
#endif
/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
#if defined(__GNUC__)
# define UNUSED_ATTR __attribute__((unused))
#else
# define UNUSED_ATTR
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# ifdef __GNUC__
# if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
@ -76,7 +83,7 @@
#ifndef __has_attribute
#define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */
#endif
#if defined(__GNUC__)
#if defined(__GNUC__) || defined(__ICCARM__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
@ -127,6 +134,18 @@
} \
}
/* vectorization
* older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax */
#if !defined(__clang__) && defined(__GNUC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
# else
# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")")
# endif
#else
# define DONT_VECTORIZE
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */

View File

@ -308,7 +308,7 @@ If there is an error, the function will return an error code, which can be teste
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) (size + (size>>7))
#define FSE_BLOCKBOUND(size) (size + (size>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
@ -358,7 +358,7 @@ size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is asumed to be valid */
FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} FSE_repeat;
/* *****************************************

View File

@ -52,7 +52,9 @@
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* check and forward error code */
#ifndef CHECK_F
#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
#endif
/* **************************************************************

View File

@ -47,6 +47,79 @@ extern "C" {
#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
/* detects whether we are being compiled under msan */
#if defined (__has_feature)
# if __has_feature(memory_sanitizer)
# define MEMORY_SANITIZER 1
# endif
#endif
#if defined (MEMORY_SANITIZER)
/* Not all platforms that support msan provide sanitizers/msan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stdint.h> /* intptr_t */
/* Make memory region fully initialized (without changing its contents). */
void __msan_unpoison(const volatile void *a, size_t size);
/* Make memory region fully uninitialized (without changing its contents).
This is a legacy interface that does not update origin information. Use
__msan_allocated_memory() instead. */
void __msan_poison(const volatile void *a, size_t size);
/* Returns the offset of the first (at least partially) poisoned byte in the
memory range, or -1 if the whole range is good. */
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
#endif
/* detects whether we are being compiled under asan */
#if defined (__has_feature)
# if __has_feature(address_sanitizer)
# define ADDRESS_SANITIZER 1
# endif
#elif defined(__SANITIZE_ADDRESS__)
# define ADDRESS_SANITIZER 1
#endif
#if defined (ADDRESS_SANITIZER)
/* Not all platforms that support asan provide sanitizers/asan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
*
* This memory must be previously allocated by your program. Instrumented
* code is forbidden from accessing addresses in this region until it is
* unpoisoned. This function is not guaranteed to poison the entire region -
* it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
* alignment restrictions.
*
* \note This function is not thread-safe because no two threads can poison or
* unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_poison_memory_region(void const volatile *addr, size_t size);
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
*
* This memory must be previously allocated by your program. Accessing
* addresses in this region is allowed until this region is poisoned again.
* This function could unpoison a super-region of <c>[addr, addr+size)</c> due
* to ASan alignment restrictions.
*
* \note This function is not thread-safe because no two threads can
* poison or unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
#endif
/*-**************************************************************
* Basic Types
@ -102,7 +175,7 @@ MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (size
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define MEM_FORCE_MEMORY_ACCESS 2
# elif defined(__INTEL_COMPILER) || defined(__GNUC__)
# elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif

View File

@ -127,9 +127,13 @@ POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
(void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
(void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
(void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
{
int error = 0;
error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
if (error) { POOL_free(ctx); return NULL; }
}
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem);

View File

@ -14,8 +14,10 @@
* This file will hold wrapper for systems, which do not support pthreads
*/
/* create fake symbol to avoid empty trnaslation unit warning */
int g_ZSTD_threading_useles_symbol;
#include "threading.h"
/* create fake symbol to avoid empty translation unit warning */
int g_ZSTD_threading_useless_symbol;
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
@ -28,7 +30,6 @@ int g_ZSTD_threading_useles_symbol;
/* === Dependencies === */
#include <process.h>
#include <errno.h>
#include "threading.h"
/* === Implementation === */
@ -73,3 +74,47 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr)
}
#endif /* ZSTD_MULTITHREAD */
#if defined(ZSTD_MULTITHREAD) && DEBUGLEVEL >= 1 && !defined(_WIN32)
#include <stdlib.h>
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr)
{
*mutex = (pthread_mutex_t*)malloc(sizeof(pthread_mutex_t));
if (!*mutex)
return 1;
return pthread_mutex_init(*mutex, attr);
}
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex)
{
if (!*mutex)
return 0;
{
int const ret = pthread_mutex_destroy(*mutex);
free(*mutex);
return ret;
}
}
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr)
{
*cond = (pthread_cond_t*)malloc(sizeof(pthread_cond_t));
if (!*cond)
return 1;
return pthread_cond_init(*cond, attr);
}
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond)
{
if (!*cond)
return 0;
{
int const ret = pthread_cond_destroy(*cond);
free(*cond);
return ret;
}
}
#endif

View File

@ -13,6 +13,8 @@
#ifndef THREADING_H_938743
#define THREADING_H_938743
#include "debug.h"
#if defined (__cplusplus)
extern "C" {
#endif
@ -75,10 +77,12 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
*/
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
/* === POSIX Systems === */
# include <pthread.h>
#if DEBUGLEVEL < 1
#define ZSTD_pthread_mutex_t pthread_mutex_t
#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b))
#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a))
@ -96,6 +100,33 @@ int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr);
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
#else /* DEBUGLEVEL >= 1 */
/* Debug implementation of threading.
* In this implementation we use pointers for mutexes and condition variables.
* This way, if we forget to init/destroy them the program will crash or ASAN
* will report leaks.
*/
#define ZSTD_pthread_mutex_t pthread_mutex_t*
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr);
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex);
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock(*(a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock(*(a))
#define ZSTD_pthread_cond_t pthread_cond_t*
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr);
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond);
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait(*(a), *(b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal(*(a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast(*(a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a, b) pthread_join((a),(b))
#endif
#else /* ZSTD_MULTITHREAD not defined */
/* No multithreading support */

View File

@ -53,7 +53,8 @@
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
# define XXH_FORCE_MEMORY_ACCESS 2
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
defined(__ICCARM__)
# define XXH_FORCE_MEMORY_ACCESS 1
# endif
#endif
@ -66,10 +67,10 @@
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
/*!XXH_FORCE_NATIVE_FORMAT :
* By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
* Results are therefore identical for little-endian and big-endian CPU.
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
* Should endian-independance be of no importance for your application, you may set the #define below to 1,
* Should endian-independence be of no importance for your application, you may set the #define below to 1,
* to improve speed for Big-endian CPU.
* This option has no impact on Little_Endian CPU.
*/
@ -120,7 +121,7 @@ static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcp
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__)
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
@ -206,7 +207,12 @@ static U64 XXH_read64(const void* memPtr)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
#if defined(__ICCARM__)
# include <intrinsics.h>
# define XXH_rotl32(x,r) __ROR(x,(32 - r))
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
#endif
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif

View File

@ -34,7 +34,6 @@
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
#if defined (__cplusplus)
extern "C" {
#endif
@ -53,8 +52,50 @@ extern "C" {
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
#define CHECK_F(f) { size_t const errcod = f; if (ERR_isError(errcod)) return errcod; } /* check and Forward error code */
#define CHECK_E(f, e) { size_t const errcod = f; if (ERR_isError(errcod)) return ERROR(e); } /* check and send Error code */
/**
* Return the specified error if the condition evaluates to true.
*
* In debug modes, prints additional information.
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
#define RETURN_ERROR_IF(cond, err, ...) \
if (cond) { \
RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
}
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
#define RETURN_ERROR(err, ...) \
do { \
RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} while(0);
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
#define FORWARD_IF_ERROR(err, ...) \
do { \
size_t const err_code = (err); \
if (ERR_isError(err_code)) { \
RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return err_code; \
} \
} while(0);
/*-*************************************
@ -151,29 +192,59 @@ static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
static void ZSTD_copy16(void* dst, const void* src) { memcpy(dst, src, 16); }
#define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; }
#define WILDCOPY_OVERLENGTH 32
#define WILDCOPY_VECLEN 16
typedef enum {
ZSTD_no_overlap,
ZSTD_overlap_src_before_dst
/* ZSTD_overlap_dst_before_src, */
} ZSTD_overlap_e;
/*! ZSTD_wildcopy() :
* custom version of memcpy(), can overwrite up to WILDCOPY_OVERLENGTH bytes (if length==0) */
#define WILDCOPY_OVERLENGTH 8
MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
* Custom version of memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0)
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart.
* The src buffer must be before the dst buffer.
*/
MEM_STATIC FORCE_INLINE_ATTR DONT_VECTORIZE
void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype)
{
ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
do
COPY8(op, ip)
while (op < oend);
}
MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* should be faster for decoding, but strangely, not verified on all platform */
{
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = (BYTE*)dstEnd;
do
COPY8(op, ip)
while (op < oend);
assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff <= -WILDCOPY_VECLEN));
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */
do {
COPY8(op, ip)
} while (op < oend);
} else {
assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
/* Separate out the first two COPY16() calls because the copy length is
* almost certain to be short, so the branches have different
* probabilities.
* On gcc-9 unrolling once is +1.6%, twice is +2%, thrice is +1.8%.
* On clang-8 unrolling once is +1.4%, twice is +3.3%, thrice is +3%.
*/
COPY16(op, ip);
COPY16(op, ip);
if (op >= oend) return;
do {
COPY16(op, ip);
COPY16(op, ip);
}
while (op < oend);
}
}
@ -200,6 +271,17 @@ typedef struct {
U32 longLengthPos;
} seqStore_t;
/**
* Contains the compressed frame size and an upper-bound for the decompressed frame size.
* Note: before using `compressedSize`, check for errors using ZSTD_isError().
* similarly, before using `decompressedBound`, check for errors using:
* `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
*/
typedef struct {
size_t compressedSize;
unsigned long long decompressedBound;
} ZSTD_frameSizeInfo; /* decompress & legacy */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
@ -218,7 +300,9 @@ MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus
_BitScanReverse(&r, val);
return (unsigned)r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */
return 31 - __builtin_clz(val);
return __builtin_clz (val) ^ 31;
# elif defined(__ICCARM__) /* IAR Intrinsic */
return 31 - __CLZ(val);
# else /* Software version */
static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;

View File

@ -129,9 +129,9 @@ size_t FSE_buildCTable_wksp(FSE_CTable* ct,
{ U32 position = 0;
U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
int nbOccurences;
int nbOccurrences;
int const freq = normalizedCounter[symbol];
for (nbOccurences=0; nbOccurences<freq; nbOccurences++) {
for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold)

File diff suppressed because it is too large Load Diff

View File

@ -19,6 +19,7 @@
* Dependencies
***************************************/
#include "zstd_internal.h"
#include "zstd_cwksp.h"
#ifdef ZSTD_MULTITHREAD
# include "zstdmt_compress.h"
#endif
@ -33,13 +34,13 @@ extern "C" {
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted".
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionnally, candidate position 1 will be lost.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be misdhandled after table re-use with a different strategy
Constant required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
@ -54,6 +55,14 @@ typedef struct ZSTD_prefixDict_s {
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
void* dictBuffer;
void const* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
ZSTD_CDict* cdict;
} ZSTD_localDict;
typedef struct {
U32 CTable[HUF_CTABLE_SIZE_U32(255)];
HUF_repeat repeatMode;
@ -107,6 +116,7 @@ typedef struct {
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
ZSTD_literalCompressionMode_e literalCompressionMode;
} optState_t;
typedef struct {
@ -119,21 +129,26 @@ typedef struct {
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more data */
U32 lowLimit; /* below that point, no more valid data */
} ZSTD_window_t;
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary */
U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
* When loadedDictEnd != 0, a dictionary is in use, and still valid.
* This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
* Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
* When dict referential is copied into active context (i.e. not attached),
* loadedDictEnd == dictSize, since referential starts from zero.
*/
U32 nextToUpdate; /* index from which to continue table update */
U32 nextToUpdate3; /* index from which to continue table update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t * dictMatchState;
const ZSTD_matchState_t* dictMatchState;
ZSTD_compressionParameters cParams;
};
@ -178,6 +193,13 @@ typedef struct {
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
typedef struct {
int collectSequences;
ZSTD_Sequence* seqStart;
size_t seqIndex;
size_t maxSequences;
} SeqCollector;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
@ -186,8 +208,15 @@ struct ZSTD_CCtx_params_s {
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size */
int srcSizeHint; /* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size */
ZSTD_dictAttachPref_e attachDictPref;
ZSTD_literalCompressionMode_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */
int nbWorkers;
@ -210,9 +239,7 @@ struct ZSTD_CCtx_s {
ZSTD_CCtx_params appliedParams;
U32 dictID;
int workSpaceOversizedDuration;
void* workSpace;
size_t workSpaceSize;
ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
@ -220,6 +247,8 @@ struct ZSTD_CCtx_s {
XXH64_state_t xxhState;
ZSTD_customMem customMem;
size_t staticSize;
SeqCollector seqCollector;
int isFirstBlock;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
@ -243,7 +272,7 @@ struct ZSTD_CCtx_s {
U32 frameEnded;
/* Dictionary */
ZSTD_CDict* cdictLocal;
ZSTD_localDict localDict;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
@ -295,26 +324,81 @@ MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
/*! ZSTD_storeSeq() :
* Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
* `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
* `mlBase` : matchLength - MINMATCH
*/
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
/* ZSTD_cParam_withinBounds:
* @return 1 if value is within cParam bounds,
* 0 otherwise */
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return 0;
if (value < bounds.lowerBound) return 0;
if (value > bounds.upperBound) return 0;
return 1;
}
/* ZSTD_minGain() :
* minimum compression required
* to generate a compress block or a compressed literals section.
* note : use same formula for both situations */
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
{
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
return (srcSize >> minlog) + 2;
}
/*! ZSTD_safecopyLiterals() :
* memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
* large copies.
*/
static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) {
assert(iend > ilimit_w);
if (ip <= ilimit_w) {
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
op += ilimit_w - ip;
ip = ilimit_w;
}
while (ip < iend) *op++ = *ip++;
}
/*! ZSTD_storeSeq() :
* Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t.
* `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes).
* `mlBase` : matchLength - MINMATCH
* Allowed to overread literals up to litLimit.
*/
HINT_INLINE UNUSED_ATTR
void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase)
{
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
BYTE const* const litEnd = literals + litLength;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode);
}
#endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
/* copy Literals */
assert(seqStorePtr->maxNbLit <= 128 KB);
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
assert(literals + litLength <= litLimit);
if (litEnd <= litLimit_w) {
/* Common case we can use wildcopy.
* First copy 16 bytes, because literals are likely short.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(seqStorePtr->lit, literals);
if (litLength > 16) {
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
}
} else {
ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
}
seqStorePtr->lit += litLength;
/* literal Length */
@ -326,7 +410,7 @@ MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const v
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offset = offsetCode + 1;
seqStorePtr->sequences[0].offset = offCode + 1;
/* match Length */
if (mlBase>0xFFFF) {
@ -554,6 +638,9 @@ MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64
/*-*************************************
* Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
@ -665,31 +752,49 @@ MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* This allows a simple check that index >= lowLimit to see if index is valid.
* This must be called before a block compression call, with srcEnd as the block
* source end.
* It ensures index is valid as long as index >= lowLimit.
* This must be called before a block compression call.
*
* If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit.
* This is because dictionaries are allowed to be referenced as long as the last
* byte of the dictionary is in the window, but once they are out of range,
* they cannot be referenced. If loadedDictEndPtr is NULL, we use
* loadedDictEnd == 0.
* loadedDictEnd is only defined if a dictionary is in use for current compression.
* As the name implies, loadedDictEnd represents the index at end of dictionary.
* The value lies within context's referential, it can be directly compared to blockEndIdx.
*
* In normal dict mode, the dict is between lowLimit and dictLimit. In
* dictMatchState mode, lowLimit and dictLimit are the same, and the dictionary
* is below them. forceWindow and dictMatchState are therefore incompatible.
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
* This is because dictionaries are allowed to be referenced fully
* as long as the last byte of the dictionary is in the window.
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
*
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
* In dictMatchState mode, lowLimit and dictLimit are the same,
* and the dictionary is below them.
* forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
void const* srcEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)srcEnd - window->base);
U32 loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u",
(unsigned)blockEndIdx, (unsigned)maxDist);
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
/* - When there is no dictionary : loadedDictEnd == 0.
In which case, the test (blockEndIdx > maxDist) is merely to avoid
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
- When there is a standard dictionary :
Index referential is copied from the dictionary,
which means it starts from 0.
In which case, loadedDictEnd == dictSize,
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
since `blockEndIdx` also starts from zero.
- When there is an attached dictionary :
loadedDictEnd is expressed within the referential of the context,
so it can be directly compared against blockEndIdx.
*/
if (blockEndIdx > maxDist + loadedDictEnd) {
U32 const newLowLimit = blockEndIdx - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
@ -698,13 +803,47 @@ ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
window->dictLimit = window->lowLimit;
}
if (loadedDictEndPtr)
*loadedDictEndPtr = 0;
if (dictMatchStatePtr)
*dictMatchStatePtr = NULL;
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/* Similar to ZSTD_window_enforceMaxDist(),
* but only invalidates dictionary
* when input progresses beyond window size.
* assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
* loadedDictEnd uses same referential as window->base
* maxDist is the window size */
MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
assert(loadedDictEndPtr != NULL);
assert(dictMatchStatePtr != NULL);
{ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = *loadedDictEndPtr;
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
assert(blockEndIdx >= loadedDictEnd);
if (blockEndIdx > loadedDictEnd + maxDist) {
/* On reaching window size, dictionaries are invalidated.
* For simplification, if window size is reached anywhere within next block,
* the dictionary is invalidated for the full block.
*/
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
*loadedDictEndPtr = 0;
*dictMatchStatePtr = NULL;
} else {
if (*loadedDictEndPtr != 0) {
DEBUGLOG(6, "dictionary considered valid for current block");
} } }
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
@ -744,6 +883,17 @@ MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
return contiguous;
}
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 current, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.lowLimit;
U32 const withinWindow = (current - lowestValid > maxDistance) ? current - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/* debug functions */
#if (DEBUGLEVEL>=2)
@ -802,17 +952,10 @@ ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_compressStream_generic() :
* Private use only. To be called from zstdmt_compress.c in single-thread mode. */
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
@ -824,7 +967,7 @@ size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
@ -833,13 +976,13 @@ size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params);
const ZSTD_CCtx_params* params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);

View File

@ -0,0 +1,154 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_literals.h"
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall);
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
memcpy(ostart + flSize, src, srcSize);
return srcSize + flSize;
}
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
return flSize+1;
}
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const int bmi2)
{
size_t const minGain = ZSTD_minGain(srcSize, strategy);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)",
disableLiteralCompression);
/* Prepare nextEntropy assuming reusing the existing table */
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* small ? don't even attempt compression (speed opt) */
# define COMPRESS_LITERALS_SIZE_MIN 63
{ size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
{ HUF_repeat repeat = prevHuf->repeatMode;
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
cLitSize = singleStream ?
HUF_compress1X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
255, 11, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) :
HUF_compress4X_repeat(
ostart+lhSize, dstCapacity-lhSize, src, srcSize,
255, 11, entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
hType = set_repeat;
}
}
if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize==1) {
memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
if (hType == set_compressed) {
/* using a newly constructed table */
nextHuf->repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
return lhSize+cLitSize;
}

View File

@ -0,0 +1,29 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_LITERALS_H
#define ZSTD_COMPRESS_LITERALS_H
#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const int bmi2);
#endif /* ZSTD_COMPRESS_LITERALS_H */

View File

@ -0,0 +1,415 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_sequences.h"
/**
* -log2(x / 256) lookup table for x in [0, 256).
* If x == 0: Return 0
* Else: Return floor(-log2(x / 256) * 256)
*/
static unsigned const kInverseProbabilityLog256[256] = {
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
5, 4, 2, 1,
};
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
void const* ptr = ctable;
U16 const* u16ptr = (U16 const*)ptr;
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
return maxSymbolValue;
}
/**
* Returns the cost in bytes of encoding the normalized count header.
* Returns an error if any of the helper functions return an error.
*/
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
size_t const nbSeq, unsigned const FSELog)
{
BYTE wksp[FSE_NCOUNTBOUND];
S16 norm[MaxSeq + 1];
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max));
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}
/**
* Returns the cost in bits of encoding the distribution described by count
* using the entropy bound.
*/
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
unsigned cost = 0;
unsigned s;
for (s = 0; s <= max; ++s) {
unsigned norm = (unsigned)((256 * count[s]) / total);
if (count[s] != 0 && norm == 0)
norm = 1;
assert(count[s] < total);
cost += count[s] * kInverseProbabilityLog256[norm];
}
return cost >> 8;
}
/**
* Returns the cost in bits of encoding the distribution in count using ctable.
* Returns an error if ctable cannot represent all the symbols in count.
*/
static size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max)
{
unsigned const kAccuracyLog = 8;
size_t cost = 0;
unsigned s;
FSE_CState_t cstate;
FSE_initCState(&cstate, ctable);
RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC,
"Repeat FSE_CTable has maxSymbolValue %u < %u",
ZSTD_getFSEMaxSymbolValue(ctable), max);
for (s = 0; s <= max; ++s) {
unsigned const tableLog = cstate.stateLog;
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
if (count[s] == 0)
continue;
RETURN_ERROR_IF(bitCost >= badCost, GENERIC,
"Repeat FSE_CTable has Prob[%u] == 0", s);
cost += count[s] * bitCost;
}
return cost >> kAccuracyLog;
}
/**
* Returns the cost in bits of encoding the distribution in count using the
* table described by norm. The max symbol support by norm is assumed >= max.
* norm must be valid for every symbol with non-zero probability in count.
*/
static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max)
{
unsigned const shift = 8 - accuracyLog;
size_t cost = 0;
unsigned s;
assert(accuracyLog <= 8);
for (s = 0; s <= max; ++s) {
unsigned const normAcc = norm[s] != -1 ? norm[s] : 1;
unsigned const norm256 = normAcc << shift;
assert(norm256 > 0);
assert(norm256 < 256);
cost += count[s] * kInverseProbabilityLog256[norm256];
}
return cost >> 8;
}
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy)
{
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if (mostFrequent == nbSeq) {
*repeatMode = FSE_repeat_none;
if (isDefaultAllowed && nbSeq <= 2) {
/* Prefer set_basic over set_rle when there are 2 or less symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
DEBUGLOG(5, "Selected set_basic");
return set_basic;
}
DEBUGLOG(5, "Selected set_rle");
return set_rle;
}
if (strategy < ZSTD_lazy) {
if (isDefaultAllowed) {
size_t const staticFse_nbSeq_max = 1000;
size_t const mult = 10 - strategy;
size_t const baseLog = 3;
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
assert(mult <= 9 && mult >= 7);
if ( (*repeatMode == FSE_repeat_valid)
&& (nbSeq < staticFse_nbSeq_max) ) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( (nbSeq < dynamicFse_nbSeq_min)
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
}
} else {
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
if (isDefaultAllowed) {
assert(!ZSTD_isError(basicCost));
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
}
assert(!ZSTD_isError(NCountCost));
assert(compressedCost < ERROR(maxCode));
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
if (basicCost <= repeatCost && basicCost <= compressedCost) {
DEBUGLOG(5, "Selected set_basic");
assert(isDefaultAllowed);
*repeatMode = FSE_repeat_none;
return set_basic;
}
if (repeatCost <= compressedCost) {
DEBUGLOG(5, "Selected set_repeat");
assert(!ZSTD_isError(repeatCost));
return set_repeat;
}
assert(compressedCost < basicCost && compressedCost < repeatCost);
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize)
{
BYTE* op = (BYTE*)dst;
const BYTE* const oend = op + dstCapacity;
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
switch (type) {
case set_rle:
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max));
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall);
*op = codeTable[0];
return 1;
case set_repeat:
memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize)); /* note : could be pre-calculated */
return 0;
case set_compressed: {
S16 norm[MaxSeq + 1];
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max));
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize);
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize));
return NCountSize;
}
}
default: assert(0); RETURN_ERROR(GENERIC);
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
RETURN_ERROR_IF(
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
dstSize_tooSmall, "not enough space remaining");
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
(int)(blockStream.endPtr - blockStream.startPtr),
(unsigned)dstCapacity);
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength,
(unsigned)sequences[n].matchLength + MINMATCH,
(unsigned)sequences[n].offset);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_SEQUENCES_H
#define ZSTD_COMPRESS_SEQUENCES_H
#include "fse.h" /* FSE_repeat, FSE_CTable */
#include "zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy);
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize);
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
#endif /* ZSTD_COMPRESS_SEQUENCES_H */

View File

@ -0,0 +1,535 @@
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H
/*-*************************************
* Dependencies
***************************************/
#include "zstd_internal.h"
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
/* define "workspace is too large" as this number of times larger than needed */
#define ZSTD_WORKSPACETOOLARGE_FACTOR 3
/* when workspace is continuously too large
* during at least this number of times,
* context's memory usage is considered wasteful,
* because it's sized to handle a worst case scenario which rarely happens.
* In which case, resize it down to free some memory */
#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128
/* Since the workspace is effectively its own little malloc implementation /
* arena, when we run under ASAN, we should similarly insert redzones between
* each internal element of the workspace, so ASAN will catch overruns that
* reach outside an object but that stay inside the workspace.
*
* This defines the size of that redzone.
*/
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif
/*-*************************************
* Structures
***************************************/
typedef enum {
ZSTD_cwksp_alloc_objects,
ZSTD_cwksp_alloc_buffers,
ZSTD_cwksp_alloc_aligned
} ZSTD_cwksp_alloc_phase_e;
/**
* Zstd fits all its internal datastructures into a single continuous buffer,
* so that it only needs to perform a single OS allocation (or so that a buffer
* can be provided to it and it can perform no allocations at all). This buffer
* is called the workspace.
*
* Several optimizations complicate that process of allocating memory ranges
* from this workspace for each internal datastructure:
*
* - These different internal datastructures have different setup requirements:
*
* - The static objects need to be cleared once and can then be trivially
* reused for each compression.
*
* - Various buffers don't need to be initialized at all--they are always
* written into before they're read.
*
* - The matchstate tables have a unique requirement that they don't need
* their memory to be totally cleared, but they do need the memory to have
* some bound, i.e., a guarantee that all values in the memory they've been
* allocated is less than some maximum value (which is the starting value
* for the indices that they will then use for compression). When this
* guarantee is provided to them, they can use the memory without any setup
* work. When it can't, they have to clear the area.
*
* - These buffers also have different alignment requirements.
*
* - We would like to reuse the objects in the workspace for multiple
* compressions without having to perform any expensive reallocation or
* reinitialization work.
*
* - We would like to be able to efficiently reuse the workspace across
* multiple compressions **even when the compression parameters change** and
* we need to resize some of the objects (where possible).
*
* To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
* abstraction was created. It works as follows:
*
* Workspace Layout:
*
* [ ... workspace ... ]
* [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
*
* The various objects that live in the workspace are divided into the
* following categories, and are allocated separately:
*
* - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
* so that literally everything fits in a single buffer. Note: if present,
* this must be the first object in the workspace, since ZSTD_free{CCtx,
* CDict}() rely on a pointer comparison to see whether one or two frees are
* required.
*
* - Fixed size objects: these are fixed-size, fixed-count objects that are
* nonetheless "dynamically" allocated in the workspace so that we can
* control how they're initialized separately from the broader ZSTD_CCtx.
* Examples:
* - Entropy Workspace
* - 2 x ZSTD_compressedBlockState_t
* - CDict dictionary contents
*
* - Tables: these are any of several different datastructures (hash tables,
* chain tables, binary trees) that all respect a common format: they are
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
* Their sizes depend on the cparams.
*
* - Aligned: these buffers are used for various purposes that require 4 byte
* alignment, but don't require any initialization before they're used.
*
* - Buffers: these buffers are used for various purposes that don't require
* any alignment or initialization before they're used. This means they can
* be moved around at no cost for a new compression.
*
* Allocating Memory:
*
* The various types of objects must be allocated in order, so they can be
* correctly packed into the workspace buffer. That order is:
*
* 1. Objects
* 2. Buffers
* 3. Aligned
* 4. Tables
*
* Attempts to reserve objects of different types out of order will fail.
*/
typedef struct {
void* workspace;
void* workspaceEnd;
void* objectEnd;
void* tableEnd;
void* tableValidEnd;
void* allocStart;
int allocFailed;
int workspaceOversizedDuration;
ZSTD_cwksp_alloc_phase_e phase;
} ZSTD_cwksp;
/*-*************************************
* Functions
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
(void)ws;
assert(ws->workspace <= ws->objectEnd);
assert(ws->objectEnd <= ws->tableEnd);
assert(ws->objectEnd <= ws->tableValidEnd);
assert(ws->tableEnd <= ws->allocStart);
assert(ws->tableValidEnd <= ws->allocStart);
assert(ws->allocStart <= ws->workspaceEnd);
}
/**
* Align must be a power of 2.
*/
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
size_t const mask = align - 1;
assert((align & mask) == 0);
return (size + mask) & ~mask;
}
/**
* Use this to determine how much space in the workspace we will consume to
* allocate this object. (Normally it should be exactly the size of the object,
* but under special conditions, like ASAN, where we pad each object, it might
* be larger.)
*
* Since tables aren't currently redzoned, you don't need to call through this
* to figure out how much space you need for the matchState tables. Everything
* else is though.
*/
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#else
return size;
#endif
}
MEM_STATIC void ZSTD_cwksp_internal_advance_phase(
ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) {
assert(phase >= ws->phase);
if (phase > ws->phase) {
if (ws->phase < ZSTD_cwksp_alloc_buffers &&
phase >= ZSTD_cwksp_alloc_buffers) {
ws->tableValidEnd = ws->objectEnd;
}
if (ws->phase < ZSTD_cwksp_alloc_aligned &&
phase >= ZSTD_cwksp_alloc_aligned) {
/* If unaligned allocations down from a too-large top have left us
* unaligned, we need to realign our alloc ptr. Technically, this
* can consume space that is unaccounted for in the neededSpace
* calculation. However, I believe this can only happen when the
* workspace is too large, and specifically when it is too large
* by a larger margin than the space that will be consumed. */
/* TODO: cleaner, compiler warning friendly way to do this??? */
ws->allocStart = (BYTE*)ws->allocStart - ((size_t)ws->allocStart & (sizeof(U32)-1));
if (ws->allocStart < ws->tableValidEnd) {
ws->tableValidEnd = ws->allocStart;
}
}
ws->phase = phase;
}
}
/**
* Returns whether this object/buffer/etc was allocated in this workspace.
*/
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) {
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
}
/**
* Internal function. Do not use directly.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_internal(
ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) {
void* alloc;
void* bottom = ws->tableEnd;
ZSTD_cwksp_internal_advance_phase(ws, phase);
alloc = (BYTE *)ws->allocStart - bytes;
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
alloc = (BYTE *)alloc - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(alloc >= bottom);
if (alloc < bottom) {
DEBUGLOG(4, "cwksp: alloc failed!");
ws->allocFailed = 1;
return NULL;
}
if (alloc < ws->tableValidEnd) {
ws->tableValidEnd = alloc;
}
ws->allocStart = alloc;
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
__asan_unpoison_memory_region(alloc, bytes);
#endif
return alloc;
}
/**
* Reserves and returns unaligned memory.
*/
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) {
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}
/**
* Reserves and returns memory sized on and aligned on sizeof(unsigned).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) {
assert((bytes & (sizeof(U32)-1)) == 0);
return ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, sizeof(U32)), ZSTD_cwksp_alloc_aligned);
}
/**
* Aligned on sizeof(unsigned). These buffers have the special property that
* their values remain constrained, allowing us to re-use them without
* memset()-ing them.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) {
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
void* alloc = ws->tableEnd;
void* end = (BYTE *)alloc + bytes;
void* top = ws->allocStart;
DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
assert((bytes & (sizeof(U32)-1)) == 0);
ZSTD_cwksp_internal_advance_phase(ws, phase);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(end <= top);
if (end > top) {
DEBUGLOG(4, "cwksp: table alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->tableEnd = end;
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
__asan_unpoison_memory_region(alloc, bytes);
#endif
return alloc;
}
/**
* Aligned on sizeof(void*).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) {
size_t roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes;
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
DEBUGLOG(5,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
assert(((size_t)alloc & (sizeof(void*)-1)) == 0);
assert((bytes & (sizeof(void*)-1)) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
DEBUGLOG(4, "cwksp: object alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->objectEnd = end;
ws->tableEnd = end;
ws->tableValidEnd = end;
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
__asan_unpoison_memory_region(alloc, bytes);
#endif
return alloc;
}
MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if defined (MEMORY_SANITIZER) && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the table re-use logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty. */
{
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
assert(__msan_test_shadow(ws->objectEnd, size) == -1);
__msan_poison(ws->objectEnd, size);
}
#endif
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
ws->tableValidEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Zero the part of the allocated tables not already marked clean.
*/
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
}
ZSTD_cwksp_mark_tables_clean(ws);
}
/**
* Invalidates table allocations.
* All other allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing tables!");
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
{
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Invalidates all buffer, aligned, and table allocations.
* Object allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
#if defined (MEMORY_SANITIZER) && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the context re-use logic is sound, and that we don't
* access stuff that this compression hasn't initialized, we re-"poison"
* the workspace (or at least the non-static, non-table parts of it)
* every time we start a new compression. */
{
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd;
__msan_poison(ws->tableValidEnd, size);
}
#endif
#if defined (ADDRESS_SANITIZER) && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
{
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ws->allocStart = ws->workspaceEnd;
ws->allocFailed = 0;
if (ws->phase > ZSTD_cwksp_alloc_buffers) {
ws->phase = ZSTD_cwksp_alloc_buffers;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
* buffer, if present, must be separately freed).
*/
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size) {
DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
ws->workspace = start;
ws->workspaceEnd = (BYTE*)start + size;
ws->objectEnd = ws->workspace;
ws->tableValidEnd = ws->objectEnd;
ws->phase = ZSTD_cwksp_alloc_objects;
ZSTD_cwksp_clear(ws);
ws->workspaceOversizedDuration = 0;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
void* workspace = ZSTD_malloc(size, customMem);
DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
RETURN_ERROR_IF(workspace == NULL, memory_allocation);
ZSTD_cwksp_init(ws, workspace, size);
return 0;
}
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_free(ptr, customMem);
}
/**
* Moves the management of a workspace from one cwksp to another. The src cwksp
* is left in an invalid state (src must be re-init()'ed before its used again).
*/
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
*dst = *src;
memset(src, 0, sizeof(ZSTD_cwksp));
}
MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
/*-*************************************
* Functions Checking Free Space
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}
MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}
MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_available(
ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}
MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
&& ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
ZSTD_cwksp* ws, size_t additionalNeededSpace) {
if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
ws->workspaceOversizedDuration++;
} else {
ws->workspaceOversizedDuration = 0;
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CWKSP_H */

View File

@ -43,8 +43,7 @@ void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
}
}
} }
}
@ -63,7 +62,11 @@ size_t ZSTD_compressBlock_doubleFast_generic(
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 prefixLowestIndex = ms->window.dictLimit;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowestValid = ms->window.dictLimit;
const U32 maxDistance = 1U << cParams->windowLog;
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = (endIndex - lowestValid > maxDistance) ? endIndex - maxDistance : lowestValid;
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
@ -95,8 +98,15 @@ size_t ZSTD_compressBlock_doubleFast_generic(
dictCParams->chainLog : hBitsS;
const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictStart);
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_generic");
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
/* if a dictionary is attached, it must be within window range */
if (dictMode == ZSTD_dictMatchState) {
assert(lowestValid + maxDistance >= endIndex);
}
/* init */
ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
@ -138,7 +148,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
goto _match_stored;
}
@ -147,7 +157,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
goto _match_stored;
}
@ -170,8 +180,7 @@ size_t ZSTD_compressBlock_doubleFast_generic(
offset = (U32)(current - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
}
}
} }
if (matchIndexS > prefixLowestIndex) {
/* check prefix short match */
@ -186,16 +195,14 @@ size_t ZSTD_compressBlock_doubleFast_generic(
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
}
} }
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
_search_next_long:
{
size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
U32 const matchIndexL3 = hashLong[hl3];
const BYTE* matchL3 = base + matchIndexL3;
@ -221,9 +228,7 @@ _search_next_long:
offset = (U32)(current + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
}
}
}
} } }
/* if no long +1 match, explore the short match we found */
if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) {
@ -242,7 +247,7 @@ _match_found:
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
_match_stored:
/* match found */
@ -250,11 +255,14 @@ _match_stored:
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] =
hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; /* here because current+2 could be > iend-8 */
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] =
hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = current+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
if (dictMode == ZSTD_dictMatchState) {
@ -270,7 +278,7 @@ _match_stored:
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
@ -278,8 +286,7 @@ _match_stored:
continue;
}
break;
}
}
} }
if (dictMode == ZSTD_noDict) {
while ( (ip <= ilimit)
@ -290,18 +297,19 @@ _match_stored:
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
} } } }
} } }
} /* while (ip < ilimit) */
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}
@ -360,10 +368,13 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const base = ms->window.base;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const U32 dictStartIndex = ms->window.lowLimit;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
@ -371,6 +382,10 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, mls, ZSTD_noDict);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
@ -396,7 +411,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
@ -407,7 +422,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
@ -432,23 +447,27 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* found a match : store it */
/* move to next sequence start */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2;
hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = current+2;
hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = current+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
@ -460,7 +479,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
@ -475,7 +494,7 @@ static size_t ZSTD_compressBlock_doubleFast_extDict_generic(
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}

View File

@ -8,12 +8,13 @@
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
#include "zstd_fast.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
@ -41,11 +42,160 @@ void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
} } } }
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_generic(
FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_fast_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls, ZSTD_dictMode_e const dictMode)
U32 const mls)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
/* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 maxDistance = 1U << cParams->windowLog;
const U32 validStartIndex = ms->window.dictLimit;
const U32 prefixStartIndex = (endIndex - validStartIndex > maxDistance) ? endIndex - maxDistance : validStartIndex;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved = 0;
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
ip0 += (ip0 == prefixStart);
ip1 = ip0 + 1;
{ U32 const maxRep = (U32)(ip0 - prefixStart);
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
/* Main Search Loop */
while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */
size_t mLength;
BYTE const* ip2 = ip0 + 2;
size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls);
U32 const val0 = MEM_read32(ip0);
size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls);
U32 const val1 = MEM_read32(ip1);
U32 const current0 = (U32)(ip0-base);
U32 const current1 = (U32)(ip1-base);
U32 const matchIndex0 = hashTable[h0];
U32 const matchIndex1 = hashTable[h1];
BYTE const* repMatch = ip2-offset_1;
const BYTE* match0 = base + matchIndex0;
const BYTE* match1 = base + matchIndex1;
U32 offcode;
hashTable[h0] = current0; /* update hash table */
hashTable[h1] = current1; /* update hash table */
assert(ip0 + 1 == ip1);
if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) {
mLength = ip2[-1] == repMatch[-1] ? 1 : 0;
ip0 = ip2 - mLength;
match0 = repMatch - mLength;
offcode = 0;
goto _match;
}
if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) {
/* found a regular match */
goto _offset;
}
if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) {
/* found a regular match after one literal */
ip0 = ip1;
match0 = match1;
goto _offset;
}
{ size_t const step = ((size_t)(ip0-anchor) >> (kSearchStrength - 1)) + stepSize;
assert(step >= 2);
ip0 += step;
ip1 += step;
continue;
}
_offset: /* Requires: ip0, match0 */
/* Compute the offset code */
offset_2 = offset_1;
offset_1 = (U32)(ip0-match0);
offcode = offset_1 + ZSTD_REP_MOVE;
mLength = 0;
/* Count the backwards match length */
while (((ip0>anchor) & (match0>prefixStart))
&& (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */
_match: /* Requires: ip0, match0, offcode */
/* Count the forward length */
mLength += ZSTD_count(ip0+mLength+4, match0+mLength+4, iend) + 4;
ZSTD_storeSeq(seqStore, (size_t)(ip0-anchor), anchor, iend, offcode, mLength-MINMATCH);
/* match found */
ip0 += mLength;
anchor = ip0;
ip1 = ip0 + 1;
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
while ( ((ip0 <= ilimit) & (offset_2>0)) /* offset_2==0 means offset_2 is invalidated */
&& (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) ) {
/* store sequence */
size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4;
{ U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += rLength;
ip1 = ip0 + 1;
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, 0 /*offCode*/, rLength-MINMATCH);
anchor = ip0;
continue; /* faster when present (confirmed on gcc-8) ... (?) */
}
}
}
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4);
case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5);
case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6);
case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7);
}
}
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
@ -64,46 +214,34 @@ size_t ZSTD_compressBlock_fast_generic(
U32 offsetSaved = 0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams =
dictMode == ZSTD_dictMatchState ?
&dms->cParams : NULL;
const U32* const dictHashTable = dictMode == ZSTD_dictMatchState ?
dms->hashTable : NULL;
const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ?
dms->window.dictLimit : 0;
const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ?
dms->window.base : NULL;
const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ?
dictBase + dictStartIndex : NULL;
const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ?
dms->window.nextSrc : NULL;
const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ?
prefixStartIndex - (U32)(dictEnd - dictBase) :
0;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
const U32* const dictHashTable = dms->hashTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart);
const U32 dictHLog = dictMode == ZSTD_dictMatchState ?
dictCParams->hashLog : hlog;
const U32 dictHLog = dictCParams->hashLog;
assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState);
/* if a dictionary is still attached, it necessarily means that
* it is within window size. So we just check it. */
const U32 maxDistance = 1U << cParams->windowLog;
const U32 endIndex = (U32)((size_t)(ip - base) + srcSize);
assert(endIndex - prefixStartIndex <= maxDistance);
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
/* otherwise, we would get index underflow when translating a dict index
* into a local index */
assert(dictMode != ZSTD_dictMatchState
|| prefixStartIndex >= (U32)(dictEnd - dictBase));
/* ensure there will be no no underflow
* when translating a dict index into a local index */
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
ip += (dictAndPrefixLength == 0);
if (dictMode == ZSTD_noDict) {
U32 const maxRep = (U32)(ip - prefixStart);
if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
}
if (dictMode == ZSTD_dictMatchState) {
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
}
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
@ -113,50 +251,37 @@ size_t ZSTD_compressBlock_fast_generic(
U32 const matchIndex = hashTable[h];
const BYTE* match = base + matchIndex;
const U32 repIndex = current + 1 - offset_1;
const BYTE* repMatch = (dictMode == ZSTD_dictMatchState
&& repIndex < prefixStartIndex) ?
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashTable[h] = current; /* update hash table */
if ( (dictMode == ZSTD_dictMatchState)
&& ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
} else if ( dictMode == ZSTD_noDict
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, mLength-MINMATCH);
} else if ( (matchIndex <= prefixStartIndex) ) {
if (dictMode == ZSTD_dictMatchState) {
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
U32 const dictMatchIndex = dictHashTable[dictHash];
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex <= dictStartIndex ||
MEM_read32(dictMatch) != MEM_read32(ip)) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
} else {
/* found a dict match */
U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta);
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
while (((ip>anchor) & (dictMatch>dictStart))
&& (ip[-1] == dictMatch[-1])) {
ip--; dictMatch--; mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
} else {
size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls);
U32 const dictMatchIndex = dictHashTable[dictHash];
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex <= dictStartIndex ||
MEM_read32(dictMatch) != MEM_read32(ip)) {
assert(stepSize >= 1);
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
} else {
/* found a dict match */
U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta);
mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4;
while (((ip>anchor) & (dictMatch>dictStart))
&& (ip[-1] == dictMatch[-1])) {
ip--; dictMatch--; mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
} else if (MEM_read32(match) != MEM_read32(ip)) {
/* it's not a match, and we're not going to check the dictionary */
@ -171,7 +296,7 @@ size_t ZSTD_compressBlock_fast_generic(
&& (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
}
/* match found */
@ -185,90 +310,53 @@ size_t ZSTD_compressBlock_fast_generic(
hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base);
/* check immediate repcode */
if (dictMode == ZSTD_dictMatchState) {
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
if (dictMode == ZSTD_noDict) {
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH);
ip += rLength;
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
continue; /* faster when present ... (?) */
} } } }
continue;
}
break;
}
}
}
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved;
rep[1] = offset_2 ? offset_2 : offsetSaved;
/* Return the last literals size */
return iend - anchor;
}
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32 const mls = cParams->minMatch;
assert(ms->dictMatchState == NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict);
case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict);
case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict);
case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict);
}
return (size_t)(iend - anchor);
}
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32 const mls = cParams->minMatch;
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState != NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState);
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4);
case 5 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState);
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5);
case 6 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState);
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6);
case 7 :
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState);
return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7);
}
}
@ -287,15 +375,24 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 dictStartIndex = ms->window.lowLimit;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const BYTE* const dictStart = dictBase + dictStartIndex;
const U32 prefixStartIndex = ms->window.dictLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic");
/* switch to "regular" variant if extDict is invalidated due to maxDistance */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, mls);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t h = ZSTD_hashPtr(ip, hlog, mls);
@ -306,16 +403,17 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
const U32 repIndex = current + 1 - offset_1;
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashTable[h] = current; /* update hash table */
assert(offset_1 <= current +1); /* check repIndex */
if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex))
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
size_t const rLength = ZSTD_count_2segments(ip+1 +4, repMatch +4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH);
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, 0, rLength-MINMATCH);
ip += rLength;
anchor = ip;
} else {
if ( (matchIndex < dictStartIndex) ||
(MEM_read32(match) != MEM_read32(ip)) ) {
@ -323,21 +421,17 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
ip += ((ip-anchor) >> kSearchStrength) + stepSize;
continue;
}
{ const BYTE* matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
{ const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
U32 const offset = current - matchIndex;
size_t mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
offset = current - matchIndex;
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
offset_2 = offset_1; offset_1 = offset; /* update offset history */
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
ip += mLength;
anchor = ip;
} }
/* found a match : store it */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Fill Table */
hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2;
@ -346,13 +440,13 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH);
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, 0 /*offcode*/, repLength2-MINMATCH);
hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2;
ip += repLength2;
anchor = ip;
@ -366,7 +460,7 @@ static size_t ZSTD_compressBlock_fast_extDict_generic(
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}
@ -374,8 +468,7 @@ size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32 const mls = cParams->minMatch;
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */

View File

@ -83,7 +83,10 @@ ZSTD_insertDUBT1(ZSTD_matchState_t* ms,
U32* largerPtr = smallerPtr + 1;
U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
U32 dummy32; /* to be nullified at the end */
U32 const windowLow = ms->window.lowLimit;
U32 const windowValid = ms->window.lowLimit;
U32 const maxDistance = 1U << cParams->windowLog;
U32 const windowLow = (current - windowValid > maxDistance) ? current - maxDistance : windowValid;
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
current, dictLimit, windowLow);
@ -239,7 +242,7 @@ ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
const BYTE* const base = ms->window.base;
U32 const current = (U32)(ip-base);
U32 const windowLow = ms->window.lowLimit;
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, current, cParams->windowLog);
U32* const bt = ms->chainTable;
U32 const btLog = cParams->chainLog - 1;
@ -490,8 +493,12 @@ size_t ZSTD_HcFindBestMatch_generic (
const U32 dictLimit = ms->window.dictLimit;
const BYTE* const prefixStart = base + dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const U32 lowLimit = ms->window.lowLimit;
const U32 current = (U32)(ip-base);
const U32 maxDistance = 1U << cParams->windowLog;
const U32 lowestValid = ms->window.lowLimit;
const U32 withinMaxDistance = (current - lowestValid > maxDistance) ? current - maxDistance : lowestValid;
const U32 isDictionary = (ms->loadedDictEnd != 0);
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
const U32 minChain = current > chainSize ? current - chainSize : 0;
U32 nbAttempts = 1U << cParams->searchLog;
size_t ml=4-1;
@ -612,12 +619,14 @@ FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
/* *******************************
* Common parser - lazy strategy
*********************************/
FORCE_INLINE_TEMPLATE
size_t ZSTD_compressBlock_lazy_generic(
typedef enum { search_hashChain, search_binaryTree } searchMethod_e;
FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_lazy_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth,
const searchMethod_e searchMethod, const U32 depth,
ZSTD_dictMode_e const dictMode)
{
const BYTE* const istart = (const BYTE*)src;
@ -633,8 +642,10 @@ size_t ZSTD_compressBlock_lazy_generic(
ZSTD_matchState_t* ms,
const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
searchMax_f const searchMax = dictMode == ZSTD_dictMatchState ?
(searchMethod ? ZSTD_BtFindBestMatch_dictMatchState_selectMLS : ZSTD_HcFindBestMatch_dictMatchState_selectMLS) :
(searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS);
(searchMethod==search_binaryTree ? ZSTD_BtFindBestMatch_dictMatchState_selectMLS
: ZSTD_HcFindBestMatch_dictMatchState_selectMLS) :
(searchMethod==search_binaryTree ? ZSTD_BtFindBestMatch_selectMLS
: ZSTD_HcFindBestMatch_selectMLS);
U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
const ZSTD_matchState_t* const dms = ms->dictMatchState;
@ -653,7 +664,6 @@ size_t ZSTD_compressBlock_lazy_generic(
/* init */
ip += (dictAndPrefixLength == 0);
ms->nextToUpdate3 = ms->nextToUpdate;
if (dictMode == ZSTD_noDict) {
U32 const maxRep = (U32)(ip - prefixLowest);
if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
@ -800,7 +810,7 @@ size_t ZSTD_compressBlock_lazy_generic(
/* store sequence */
_storeSequence:
{ size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
anchor = ip = start + matchLength;
}
@ -818,7 +828,7 @@ _storeSequence:
const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
ip += matchLength;
anchor = ip;
continue;
@ -833,7 +843,7 @@ _storeSequence:
/* store sequence */
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
@ -844,7 +854,7 @@ _storeSequence:
rep[1] = offset_2 ? offset_2 : savedOffset;
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}
@ -852,56 +862,56 @@ size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_noDict);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
}
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_noDict);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
}
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_noDict);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
}
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_noDict);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
}
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_dictMatchState);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_dictMatchState);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_dictMatchState);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
}
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_dictMatchState);
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
}
@ -910,7 +920,7 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore,
U32 rep[ZSTD_REP_NUM],
const void* src, size_t srcSize,
const U32 searchMethod, const U32 depth)
const searchMethod_e searchMethod, const U32 depth)
{
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
@ -928,12 +938,11 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(
typedef size_t (*searchMax_f)(
ZSTD_matchState_t* ms,
const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS;
searchMax_f searchMax = searchMethod==search_binaryTree ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS;
U32 offset_1 = rep[0], offset_2 = rep[1];
/* init */
ms->nextToUpdate3 = ms->nextToUpdate;
ip += (ip == prefixStart);
/* Match Loop */
@ -1042,7 +1051,7 @@ size_t ZSTD_compressBlock_lazy_extDict_generic(
/* store sequence */
_storeSequence:
{ size_t const litLength = start - anchor;
ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offset, matchLength-MINMATCH);
anchor = ip = start + matchLength;
}
@ -1057,7 +1066,7 @@ _storeSequence:
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH);
ZSTD_storeSeq(seqStore, 0, anchor, iend, 0, matchLength-MINMATCH);
ip += matchLength;
anchor = ip;
continue; /* faster when present ... (?) */
@ -1070,7 +1079,7 @@ _storeSequence:
rep[1] = offset_2;
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}
@ -1078,7 +1087,7 @@ size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 0);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
}
size_t ZSTD_compressBlock_lazy_extDict(
@ -1086,7 +1095,7 @@ size_t ZSTD_compressBlock_lazy_extDict(
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 1);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
}
size_t ZSTD_compressBlock_lazy2_extDict(
@ -1094,7 +1103,7 @@ size_t ZSTD_compressBlock_lazy2_extDict(
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 2);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
}
size_t ZSTD_compressBlock_btlazy2_extDict(
@ -1102,5 +1111,5 @@ size_t ZSTD_compressBlock_btlazy2_extDict(
void const* src, size_t srcSize)
{
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 1, 2);
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
}

View File

@ -19,7 +19,7 @@ extern "C" {
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). pre-emptively increase value of ZSTD_DUBT_UNSORTED_MARK */
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],

View File

@ -49,9 +49,9 @@ size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize =
((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t);
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
return params.enableLdm ? totalSize : 0;
}
@ -429,7 +429,7 @@ size_t ZSTD_ldm_generateSequences(
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximmum distance and handle overflow correction.
* chunks to enforce the maximum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
@ -447,7 +447,7 @@ size_t ZSTD_ldm_generateSequences(
if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, src);
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
}
/* 2. We enforce the maximum offset allowed.
@ -583,7 +583,7 @@ size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength,
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
sequence.offset + ZSTD_REP_MOVE,
sequence.matchLength - MINMATCH);
ip += sequence.matchLength;

View File

@ -64,9 +64,15 @@ MEM_STATIC double ZSTD_fCost(U32 price)
}
#endif
static int ZSTD_compressedLiterals(optState_t const* const optPtr)
{
return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
}
static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
{
optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
if (ZSTD_compressedLiterals(optPtr))
optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
@ -99,6 +105,7 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
const BYTE* const src, size_t const srcSize,
int const optLevel)
{
int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
optPtr->priceType = zop_dynamic;
@ -113,9 +120,10 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
/* huffman table presumed generated by dictionary */
optPtr->priceType = zop_dynamic;
assert(optPtr->litFreq != NULL);
optPtr->litSum = 0;
{ unsigned lit;
if (compressedLiterals) {
unsigned lit;
assert(optPtr->litFreq != NULL);
optPtr->litSum = 0;
for (lit=0; lit<=MaxLit; lit++) {
U32 const scaleLog = 11; /* scale to 2K */
U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
@ -163,10 +171,11 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
} else { /* not a dictionary */
assert(optPtr->litFreq != NULL);
{ unsigned lit = MaxLit;
if (compressedLiterals) {
unsigned lit = MaxLit;
HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
}
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
{ unsigned ll;
for (ll=0; ll<=MaxLL; ll++)
@ -190,7 +199,8 @@ ZSTD_rescaleFreqs(optState_t* const optPtr,
} else { /* new block : re-use previous statistics, scaled down */
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
if (compressedLiterals)
optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
@ -207,6 +217,10 @@ static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
int optLevel)
{
if (litLength == 0) return 0;
if (!ZSTD_compressedLiterals(optPtr))
return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */
if (optPtr->priceType == zop_predef)
return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */
@ -241,13 +255,13 @@ static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optP
* to provide a cost which is directly comparable to a match ending at same position */
static int ZSTD_litLengthContribution(U32 const litLength, const optState_t* const optPtr, int optLevel)
{
if (optPtr->priceType >= zop_predef) return WEIGHT(litLength, optLevel);
if (optPtr->priceType >= zop_predef) return (int)WEIGHT(litLength, optLevel);
/* dynamic statistics */
{ U32 const llCode = ZSTD_LLcode(litLength);
int const contribution = (LL_bits[llCode] * BITCOST_MULTIPLIER)
+ WEIGHT(optPtr->litLengthFreq[0], optLevel) /* note: log2litLengthSum cancel out */
- WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
int const contribution = (int)(LL_bits[llCode] * BITCOST_MULTIPLIER)
+ (int)WEIGHT(optPtr->litLengthFreq[0], optLevel) /* note: log2litLengthSum cancel out */
- (int)WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
#if 1
return contribution;
#else
@ -264,7 +278,7 @@ static int ZSTD_literalsContribution(const BYTE* const literals, U32 const litLe
const optState_t* const optPtr,
int optLevel)
{
int const contribution = ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel)
int const contribution = (int)ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel)
+ ZSTD_litLengthContribution(litLength, optPtr, optLevel);
return contribution;
}
@ -310,7 +324,8 @@ static void ZSTD_updateStats(optState_t* const optPtr,
U32 offsetCode, U32 matchLength)
{
/* literals */
{ U32 u;
if (ZSTD_compressedLiterals(optPtr)) {
U32 u;
for (u=0; u < litLength; u++)
optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
@ -357,13 +372,15 @@ MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
/* Update hashTable3 up to ip (excluded)
Assumption : always within prefix (i.e. not within extDict) */
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, const BYTE* const ip)
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* const ip)
{
U32* const hashTable3 = ms->hashTable3;
U32 const hashLog3 = ms->hashLog3;
const BYTE* const base = ms->window.base;
U32 idx = ms->nextToUpdate3;
U32 const target = ms->nextToUpdate3 = (U32)(ip - base);
U32 idx = *nextToUpdate3;
U32 const target = (U32)(ip - base);
size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
assert(hashLog3 > 0);
@ -372,6 +389,7 @@ static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, const BYTE*
idx++;
}
*nextToUpdate3 = target;
return hashTable3[hash3];
}
@ -488,9 +506,11 @@ static U32 ZSTD_insertBt1(
} }
*smallerPtr = *largerPtr = 0;
if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
assert(matchEndIdx > current + 8);
return matchEndIdx - (current + 8);
{ U32 positions = 0;
if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384)); /* speed optimization */
assert(matchEndIdx > current + 8);
return MAX(positions, matchEndIdx - (current + 8));
}
}
FORCE_INLINE_TEMPLATE
@ -505,8 +525,13 @@ void ZSTD_updateTree_internal(
DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)",
idx, target, dictMode);
while(idx < target)
idx += ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
while(idx < target) {
U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
assert(idx < (U32)(idx + forward));
idx += forward;
}
assert((size_t)(ip - base) <= (size_t)(U32)(-1));
assert((size_t)(iend - base) <= (size_t)(U32)(-1));
ms->nextToUpdate = target;
}
@ -516,11 +541,12 @@ void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
FORCE_INLINE_TEMPLATE
U32 ZSTD_insertBtAndGetAllMatches (
ZSTD_match_t* matches, /* store result (found matches) in this table (presumed large enough) */
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
U32 rep[ZSTD_REP_NUM],
const U32 rep[ZSTD_REP_NUM],
U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
ZSTD_match_t* matches,
const U32 lengthToBeat,
U32 const mls /* template */)
{
@ -541,8 +567,8 @@ U32 ZSTD_insertBtAndGetAllMatches (
U32 const dictLimit = ms->window.dictLimit;
const BYTE* const dictEnd = dictBase + dictLimit;
const BYTE* const prefixStart = base + dictLimit;
U32 const btLow = btMask >= current ? 0 : current - btMask;
U32 const windowLow = ms->window.lowLimit;
U32 const btLow = (btMask >= current) ? 0 : current - btMask;
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, current, cParams->windowLog);
U32 const matchLow = windowLow ? windowLow : 1;
U32* smallerPtr = bt + 2*(current&btMask);
U32* largerPtr = bt + 2*(current&btMask) + 1;
@ -612,7 +638,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
/* HC3 match finder */
if ((mls == 3) /*static*/ && (bestLength < mls)) {
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, ip);
U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
if ((matchIndex3 >= matchLow)
& (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
size_t mlen;
@ -638,9 +664,7 @@ U32 ZSTD_insertBtAndGetAllMatches (
(ip+mlen == iLimit) ) { /* best possible length */
ms->nextToUpdate = current+1; /* skip insertion */
return 1;
}
}
}
} } }
/* no dictMatchState lookup: dicts don't have a populated HC3 table */
}
@ -648,19 +672,21 @@ U32 ZSTD_insertBtAndGetAllMatches (
while (nbCompares-- && (matchIndex >= matchLow)) {
U32* const nextPtr = bt + 2*(matchIndex & btMask);
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
const BYTE* match;
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
assert(current > matchIndex);
if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */
match = base + matchIndex;
if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
} else {
match = dictBase + matchIndex;
assert(memcmp(match, ip, matchLength) == 0); /* ensure early section of match is equal as expected */
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
if (matchIndex+matchLength >= dictLimit)
match = base + matchIndex; /* prepare for match[matchLength] */
match = base + matchIndex; /* prepare for match[matchLength] read */
}
if (matchLength > bestLength) {
@ -745,10 +771,13 @@ U32 ZSTD_insertBtAndGetAllMatches (
FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
ZSTD_match_t* matches, /* store result (match found, increasing size) in this table */
ZSTD_matchState_t* ms,
U32* nextToUpdate3,
const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
U32 rep[ZSTD_REP_NUM], U32 const ll0,
ZSTD_match_t* matches, U32 const lengthToBeat)
const U32 rep[ZSTD_REP_NUM],
U32 const ll0,
U32 const lengthToBeat)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32 const matchLengthSearch = cParams->minMatch;
@ -757,12 +786,12 @@ FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
switch(matchLengthSearch)
{
case 3 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 3);
case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
default :
case 4 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 4);
case 5 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 5);
case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
case 7 :
case 6 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 6);
case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
}
}
@ -838,6 +867,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
U32 nextToUpdate3 = ms->nextToUpdate;
ZSTD_optimal_t* const opt = optStatePtr->priceTable;
ZSTD_match_t* const matches = optStatePtr->matchTable;
@ -847,7 +877,6 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
(U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
assert(optLevel <= 2);
ms->nextToUpdate3 = ms->nextToUpdate;
ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
ip += (ip==prefixStart);
@ -858,7 +887,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
/* find first match */
{ U32 const litlen = (U32)(ip - anchor);
U32 const ll0 = !litlen;
U32 const nbMatches = ZSTD_BtGetAllMatches(ms, ip, iend, dictMode, rep, ll0, matches, minMatch);
U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
if (!nbMatches) { ip++; continue; }
/* initialize opt[0] */
@ -870,7 +899,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
/* large match -> immediate encoding */
{ U32 const maxML = matches[nbMatches-1].len;
U32 const maxOffset = matches[nbMatches-1].off;
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new serie",
DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
if (maxML > sufficient_len) {
@ -955,7 +984,7 @@ ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
U32 const previousPrice = opt[cur].price;
U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
U32 const nbMatches = ZSTD_BtGetAllMatches(ms, inr, iend, dictMode, opt[cur].rep, ll0, matches, minMatch);
U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
U32 matchNb;
if (!nbMatches) {
DEBUGLOG(7, "rPos:%u : no match found", cur);
@ -1069,7 +1098,7 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
assert(anchor + llen <= iend);
ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
ZSTD_storeSeq(seqStore, llen, anchor, offCode, mlen-MINMATCH);
ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
anchor += advance;
ip = anchor;
} }
@ -1079,7 +1108,7 @@ _shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */
} /* while (ip < ilimit) */
/* Return the last literals size */
return iend - anchor;
return (size_t)(iend - anchor);
}
@ -1108,7 +1137,8 @@ static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
/* used in 2-pass strategy */
MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
{
optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
if (ZSTD_compressedLiterals(optPtr))
optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
@ -1117,7 +1147,7 @@ MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
/* ZSTD_initStats_ultra():
* make a first compression pass, just to seed stats with more accurate starting values.
* only works on first block, with no dictionary and no ldm.
* this function cannot error, hence its constract must be respected.
* this function cannot error, hence its contract must be respected.
*/
static void
ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
@ -1142,7 +1172,6 @@ ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
ms->window.dictLimit += (U32)srcSize;
ms->window.lowLimit = ms->window.dictLimit;
ms->nextToUpdate = ms->window.dictLimit;
ms->nextToUpdate3 = ms->window.dictLimit;
/* re-inforce weight of collected statistics */
ZSTD_upscaleStats(&ms->opt);

View File

@ -22,6 +22,7 @@
/* ====== Dependencies ====== */
#include <string.h> /* memcpy, memset */
#include <limits.h> /* INT_MAX, UINT_MAX */
#include "mem.h" /* MEM_STATIC */
#include "pool.h" /* threadpool */
#include "threading.h" /* mutex */
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
@ -456,7 +457,7 @@ typedef struct {
* Must be acquired after the main mutex when acquiring both.
*/
ZSTD_pthread_mutex_t ldmWindowMutex;
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is udpated */
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
} serialState_t;
@ -647,7 +648,7 @@ static void ZSTDMT_compressionJob(void* jobDescription)
buffer_t dstBuff = job->dstBuff;
size_t lastCBlockSize = 0;
/* ressources */
/* resources */
if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
dstBuff = ZSTDMT_getBuffer(job->bufPool);
@ -667,19 +668,19 @@ static void ZSTDMT_compressionJob(void* jobDescription)
/* init */
if (job->cdict) {
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize);
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
assert(job->firstJob); /* only allowed for first job */
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} else { /* srcStart points at reloaded section */
U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
{ size_t const forceWindowError = ZSTD_CCtxParam_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
{ size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
}
{ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
ZSTD_dtlm_fast,
NULL, /*cdict*/
jobParams, pledgedSrcSize);
&jobParams, pledgedSrcSize);
if (ZSTD_isError(initError)) JOB_ERROR(initError);
} }
@ -864,14 +865,10 @@ static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
* Internal use only */
size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
{
if (nbWorkers > ZSTDMT_NBWORKERS_MAX) nbWorkers = ZSTDMT_NBWORKERS_MAX;
params->nbWorkers = nbWorkers;
params->overlapLog = ZSTDMT_OVERLAPLOG_DEFAULT;
params->jobSize = 0;
return nbWorkers;
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
}
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem)
{
ZSTDMT_CCtx* mtctx;
U32 nbJobs = nbWorkers + 2;
@ -906,6 +903,17 @@ ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
return mtctx;
}
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem);
#else
(void)nbWorkers;
(void)cMem;
return NULL;
#endif
}
ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers)
{
return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem);
@ -919,12 +927,18 @@ static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
unsigned jobID;
DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
/* Copy the mutex/cond out */
ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
mtctx->jobs[jobID].cSize = 0;
/* Clear the job description, but keep the mutex/cond */
memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
mtctx->jobs[jobID].job_mutex = mutex;
mtctx->jobs[jobID].job_cond = cond;
}
memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->inBuff.filled = 0;
mtctx->allJobsCompleted = 1;
@ -986,26 +1000,13 @@ ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params,
{
case ZSTDMT_p_jobSize :
DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value);
if ( value != 0 /* default */
&& value < ZSTDMT_JOBSIZE_MIN)
value = ZSTDMT_JOBSIZE_MIN;
assert(value >= 0);
if (value > ZSTDMT_JOBSIZE_MAX) value = ZSTDMT_JOBSIZE_MAX;
params->jobSize = value;
return value;
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value);
case ZSTDMT_p_overlapLog :
DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value);
if (value < ZSTD_OVERLAPLOG_MIN) value = ZSTD_OVERLAPLOG_MIN;
if (value > ZSTD_OVERLAPLOG_MAX) value = ZSTD_OVERLAPLOG_MAX;
params->overlapLog = value;
return value;
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value);
case ZSTDMT_p_rsyncable :
value = (value != 0);
params->rsyncable = value;
return value;
DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value);
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value);
default :
return ERROR(parameter_unsupported);
}
@ -1021,32 +1022,29 @@ size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter,
{
switch (parameter) {
case ZSTDMT_p_jobSize:
assert(mtctx->params.jobSize <= INT_MAX);
*value = (int)(mtctx->params.jobSize);
break;
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value);
case ZSTDMT_p_overlapLog:
*value = mtctx->params.overlapLog;
break;
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value);
case ZSTDMT_p_rsyncable:
*value = mtctx->params.rsyncable;
break;
return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value);
default:
return ERROR(parameter_unsupported);
}
return 0;
}
/* Sets parameters relevant to the compression job,
* initializing others to default values. */
static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params)
static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(const ZSTD_CCtx_params* params)
{
ZSTD_CCtx_params jobParams;
memset(&jobParams, 0, sizeof(jobParams));
jobParams.cParams = params.cParams;
jobParams.fParams = params.fParams;
jobParams.compressionLevel = params.compressionLevel;
ZSTD_CCtx_params jobParams = *params;
/* Clear parameters related to multithreading */
jobParams.forceWindow = 0;
jobParams.nbWorkers = 0;
jobParams.jobSize = 0;
jobParams.overlapLog = 0;
jobParams.rsyncable = 0;
memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t));
memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem));
return jobParams;
}
@ -1056,7 +1054,7 @@ static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params)
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
{
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
CHECK_F( ZSTDMT_expandJobsTable(mtctx, nbWorkers) );
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) );
mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
@ -1137,9 +1135,14 @@ size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
assert(flushed <= produced);
assert(jobPtr->consumed <= jobPtr->src.size);
toFlush = produced - flushed;
if (toFlush==0 && (jobPtr->consumed >= jobPtr->src.size)) {
/* doneJobID is not-fully-flushed, but toFlush==0 : doneJobID should be compressing some more data */
/* if toFlush==0, nothing is available to flush.
* However, jobID is expected to still be active:
* if jobID was already completed and fully flushed,
* ZSTDMT_flushProduced() should have already moved onto next job.
* Therefore, some input has not yet been consumed. */
if (toFlush==0) {
assert(jobPtr->consumed < jobPtr->src.size);
}
}
@ -1154,14 +1157,18 @@ size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params)
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
{
if (params.ldmParams.enableLdm)
unsigned jobLog;
if (params->ldmParams.enableLdm) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on chainLog instead. */
return MAX(21, params.cParams.chainLog + 4);
return MAX(20, params.cParams.windowLog + 2);
jobLog = MAX(21, params->cParams.chainLog + 4);
} else {
jobLog = MAX(20, params->cParams.windowLog + 2);
}
return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
}
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
@ -1192,27 +1199,27 @@ static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
return ovlog;
}
static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params)
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
{
int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy);
int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog);
int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
assert(0 <= overlapRLog && overlapRLog <= 8);
if (params.ldmParams.enableLdm) {
if (params->ldmParams.enableLdm) {
/* In Long Range Mode, the windowLog is typically oversized.
* In which case, it's preferable to determine the jobSize
* based on chainLog instead.
* Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
- overlapRLog;
}
assert(0 <= ovLog && ovLog <= 30);
DEBUGLOG(4, "overlapLog : %i", params.overlapLog);
assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
return (ovLog==0) ? 0 : (size_t)1 << ovLog;
}
static unsigned
ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers)
ZSTDMT_computeNbJobs(const ZSTD_CCtx_params* params, size_t srcSize, unsigned nbWorkers)
{
assert(nbWorkers>0);
{ size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params);
@ -1235,9 +1242,9 @@ static size_t ZSTDMT_compress_advanced_internal(
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params)
{
ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params);
size_t const overlapSize = ZSTDMT_computeOverlapSize(params);
unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers);
ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(&params);
size_t const overlapSize = ZSTDMT_computeOverlapSize(&params);
unsigned const nbJobs = ZSTDMT_computeNbJobs(&params, srcSize, params.nbWorkers);
size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs;
size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */
const char* const srcStart = (const char*)src;
@ -1255,7 +1262,7 @@ static size_t ZSTDMT_compress_advanced_internal(
ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode");
if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams);
return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams);
return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, &jobParams);
}
assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */
@ -1263,7 +1270,7 @@ static size_t ZSTDMT_compress_advanced_internal(
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize))
return ERROR(memory_allocation);
CHECK_F( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */
{ unsigned u;
for (u=0; u<nbJobs; u++) {
@ -1396,19 +1403,19 @@ size_t ZSTDMT_initCStream_internal(
/* init */
if (params.nbWorkers != mtctx->params.nbWorkers)
CHECK_F( ZSTDMT_resize(mtctx, params.nbWorkers) );
FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) );
if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = ZSTDMT_JOBSIZE_MAX;
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */
if (mtctx->singleBlockingThread) {
ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params);
ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(&params);
DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode");
assert(singleThreadParams.nbWorkers == 0);
return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0],
dict, dictSize, cdict,
singleThreadParams, pledgedSrcSize);
&singleThreadParams, pledgedSrcSize);
}
DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
@ -1434,12 +1441,14 @@ size_t ZSTDMT_initCStream_internal(
mtctx->cdict = cdict;
}
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params);
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
mtctx->targetSectionSize = params.jobSize;
if (mtctx->targetSectionSize == 0) {
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params);
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
}
assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
if (params.rsyncable) {
/* Aim for the targetsectionSize as the average job size. */
U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
@ -1547,7 +1556,7 @@ size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) {
/* ZSTDMT_writeLastEmptyBlock()
* Write a single empty block with an end-of-frame to finish a frame.
* Job must be created from streaming variant.
* This function is always successfull if expected conditions are fulfilled.
* This function is always successful if expected conditions are fulfilled.
*/
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
{
@ -1987,7 +1996,7 @@ size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
assert(input->pos <= input->size);
if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */
return ZSTD_compressStream_generic(mtctx->cctxPool->cctx[0], output, input, endOp);
return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp);
}
if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
@ -2051,7 +2060,7 @@ size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
|| ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
size_t const jobSize = mtctx->inBuff.filled;
assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
CHECK_F( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) );
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) );
}
/* check for potential compressed data ready to be flushed */
@ -2065,7 +2074,7 @@ size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
CHECK_F( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) );
FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) );
/* recommended next input size : fill current input buffer */
return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */
@ -2082,7 +2091,7 @@ static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* ou
|| ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */
DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)",
(U32)srcSize, (U32)endFrame);
CHECK_F( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) );
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) );
}
/* check if there is any data available to flush */

View File

@ -17,10 +17,25 @@
/* Note : This is an internal API.
* Some methods are still exposed (ZSTDLIB_API),
* These APIs used to be exposed with ZSTDLIB_API,
* because it used to be the only way to invoke MT compression.
* Now, it's recommended to use ZSTD_compress_generic() instead.
* These methods will stop being exposed in a future version */
* Now, it's recommended to use ZSTD_compress2 and ZSTD_compressStream2()
* instead.
*
* If you depend on these APIs and can't switch, then define
* ZSTD_LEGACY_MULTITHREADED_API when making the dynamic library.
* However, we may completely remove these functions in a future
* release, so please switch soon.
*
* This API requires ZSTD_MULTITHREAD to be defined during compilation,
* otherwise ZSTDMT_createCCtx*() will fail.
*/
#ifdef ZSTD_LEGACY_MULTITHREADED_API
# define ZSTDMT_API ZSTDLIB_API
#else
# define ZSTDMT_API
#endif
/* === Dependencies === */
#include <stddef.h> /* size_t */
@ -35,22 +50,25 @@
#ifndef ZSTDMT_JOBSIZE_MIN
# define ZSTDMT_JOBSIZE_MIN (1 MB)
#endif
#define ZSTDMT_JOBLOG_MAX (MEM_32bits() ? 29 : 30)
#define ZSTDMT_JOBSIZE_MAX (MEM_32bits() ? (512 MB) : (1024 MB))
/* === Memory management === */
typedef struct ZSTDMT_CCtx_s ZSTDMT_CCtx;
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
ZSTDLIB_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
ZSTDMT_API ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers);
/* Requires ZSTD_MULTITHREAD to be defined during compilation, otherwise it will return NULL. */
ZSTDMT_API ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers,
ZSTD_customMem cMem);
ZSTDLIB_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
ZSTDMT_API size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx);
ZSTDLIB_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
ZSTDMT_API size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx);
/* === Simple one-pass compression function === */
ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
ZSTDMT_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
@ -59,31 +77,31 @@ ZSTDLIB_API size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
/* === Streaming functions === */
ZSTDLIB_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
ZSTDLIB_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
ZSTDMT_API size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel);
ZSTDMT_API size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize); /**< if srcSize is not known at reset time, use ZSTD_CONTENTSIZE_UNKNOWN. Note: for compatibility with older programs, 0 means the same as ZSTD_CONTENTSIZE_UNKNOWN, but it will change in the future to mean "empty" */
ZSTDLIB_API size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
ZSTDLIB_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
ZSTDMT_API size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx);
ZSTDMT_API size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input);
ZSTDLIB_API size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
ZSTDMT_API size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
ZSTDMT_API size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output); /**< @return : 0 == all flushed; >0 : still some data to be flushed; or an error code (ZSTD_isError()) */
/* === Advanced functions and parameters === */
ZSTDLIB_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters params,
int overlapLog);
ZSTDMT_API size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict,
ZSTD_parameters params,
int overlapLog);
ZSTDLIB_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
ZSTDMT_API size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx,
const void* dict, size_t dictSize, /* dict can be released after init, a local copy is preserved within zcs */
ZSTD_parameters params,
unsigned long long pledgedSrcSize); /* pledgedSrcSize is optional and can be zero == unknown */
ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
ZSTDMT_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fparams,
unsigned long long pledgedSrcSize); /* note : zero means empty */
@ -92,7 +110,7 @@ ZSTDLIB_API size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx,
* List of parameters that can be set using ZSTDMT_setMTCtxParameter() */
typedef enum {
ZSTDMT_p_jobSize, /* Each job is compressed in parallel. By default, this value is dynamically determined depending on compression parameters. Can be set explicitly here. */
ZSTDMT_p_overlapLog, /* Each job may reload a part of previous job to enhance compressionr ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
ZSTDMT_p_overlapLog, /* Each job may reload a part of previous job to enhance compression ratio; 0 == no overlap, 6(default) == use 1/8th of window, >=9 == use full window. This is a "sticky" parameter : its value will be re-used on next compression job */
ZSTDMT_p_rsyncable /* Enables rsyncable mode. */
} ZSTDMT_parameter;
@ -101,12 +119,12 @@ typedef enum {
* The function must be called typically after ZSTD_createCCtx() but __before ZSTDMT_init*() !__
* Parameters not explicitly reset by ZSTDMT_init*() remain the same in consecutive compression sessions.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value);
ZSTDMT_API size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value);
/* ZSTDMT_getMTCtxParameter() :
* Query the ZSTDMT_CCtx for a parameter value.
* @return : 0, or an error code (which can be tested using ZSTD_isError()) */
ZSTDLIB_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value);
ZSTDMT_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value);
/*! ZSTDMT_compressStream_generic() :
@ -116,7 +134,7 @@ ZSTDLIB_API size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter
* 0 if fully flushed
* or an error code
* note : needs to be init using any ZSTD_initCStream*() variant */
ZSTDLIB_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTDMT_API size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp);

View File

@ -61,7 +61,9 @@
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
#ifndef CHECK_F
#define CHECK_F(f) { size_t const err_ = (f); if (HUF_isError(err_)) return err_; }
#endif
/* **************************************************************

View File

@ -105,9 +105,9 @@ ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
CHECK_E( ZSTD_loadDEntropy(&ddict->entropy,
ddict->dictContent, ddict->dictSize),
dictionary_corrupted );
RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
&ddict->entropy, ddict->dictContent, ddict->dictSize)),
dictionary_corrupted);
ddict->entropyPresent = 1;
return 0;
}
@ -133,7 +133,7 @@ static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
/* parse dictionary content */
CHECK_F( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) );
FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) );
return 0;
}

View File

@ -88,10 +88,7 @@ size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
static size_t ZSTD_startingInputLength(ZSTD_format_e format)
{
size_t const startingInputLength = (format==ZSTD_f_zstd1_magicless) ?
ZSTD_FRAMEHEADERSIZE_PREFIX - ZSTD_FRAMEIDSIZE :
ZSTD_FRAMEHEADERSIZE_PREFIX;
ZSTD_STATIC_ASSERT(ZSTD_FRAMEHEADERSIZE_PREFIX >= ZSTD_FRAMEIDSIZE);
size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format);
/* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */
assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) );
return startingInputLength;
@ -106,6 +103,7 @@ static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
dctx->ddictLocal = NULL;
dctx->dictEnd = NULL;
dctx->ddictIsCold = 0;
dctx->dictUses = ZSTD_dont_use;
dctx->inBuff = NULL;
dctx->inBuffSize = 0;
dctx->outBuffSize = 0;
@ -147,13 +145,20 @@ ZSTD_DCtx* ZSTD_createDCtx(void)
return ZSTD_createDCtx_advanced(ZSTD_defaultCMem);
}
static void ZSTD_clearDict(ZSTD_DCtx* dctx)
{
ZSTD_freeDDict(dctx->ddictLocal);
dctx->ddictLocal = NULL;
dctx->ddict = NULL;
dctx->dictUses = ZSTD_dont_use;
}
size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support free on NULL */
if (dctx->staticSize) return ERROR(memory_allocation); /* not compatible with static DCtx */
RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx");
{ ZSTD_customMem const cMem = dctx->customMem;
ZSTD_freeDDict(dctx->ddictLocal);
dctx->ddictLocal = NULL;
ZSTD_clearDict(dctx);
ZSTD_free(dctx->inBuff, cMem);
dctx->inBuff = NULL;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
@ -203,7 +208,7 @@ unsigned ZSTD_isFrame(const void* buffer, size_t size)
static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format)
{
size_t const minInputSize = ZSTD_startingInputLength(format);
if (srcSize < minInputSize) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong);
{ BYTE const fhd = ((const BYTE*)src)[minInputSize-1];
U32 const dictID= fhd & 3;
@ -238,7 +243,7 @@ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, s
memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
if (srcSize < minInputSize) return minInputSize;
if (src==NULL) return ERROR(GENERIC); /* invalid parameter */
RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter");
if ( (format != ZSTD_f_zstd1_magicless)
&& (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
@ -251,7 +256,7 @@ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, s
zfhPtr->frameType = ZSTD_skippableFrame;
return 0;
}
return ERROR(prefix_unknown);
RETURN_ERROR(prefix_unknown);
}
/* ensure there is enough `srcSize` to fully read/decode frame header */
@ -269,14 +274,13 @@ size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, s
U64 windowSize = 0;
U32 dictID = 0;
U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN;
if ((fhdByte & 0x08) != 0)
return ERROR(frameParameter_unsupported); /* reserved bits, must be zero */
RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported,
"reserved bits, must be zero");
if (!singleSegment) {
BYTE const wlByte = ip[pos++];
U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
if (windowLog > ZSTD_WINDOWLOG_MAX)
return ERROR(frameParameter_windowTooLarge);
RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge);
windowSize = (1ULL << windowLog);
windowSize += (windowSize >> 3) * (wlByte&7);
}
@ -348,14 +352,16 @@ static size_t readSkippableFrameSize(void const* src, size_t srcSize)
size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE;
U32 sizeU32;
if (srcSize < ZSTD_SKIPPABLEHEADERSIZE)
return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong);
sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE);
if ((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32)
return ERROR(frameParameter_unsupported);
return skippableHeaderSize + sizeU32;
RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32,
frameParameter_unsupported);
{
size_t const skippableSize = skippableHeaderSize + sizeU32;
RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong);
return skippableSize;
}
}
/** ZSTD_findDecompressedSize() :
@ -367,16 +373,15 @@ unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
{
unsigned long long totalDstSize = 0;
while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) {
while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) {
U32 const magicNumber = MEM_readLE32(src);
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
if (ZSTD_isError(skippableSize))
return skippableSize;
if (srcSize < skippableSize) {
if (ZSTD_isError(skippableSize)) {
return ZSTD_CONTENTSIZE_ERROR;
}
assert(skippableSize <= srcSize);
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
@ -428,13 +433,91 @@ static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t he
{
size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format);
if (ZSTD_isError(result)) return result; /* invalid header */
if (result>0) return ERROR(srcSize_wrong); /* headerSize too small */
if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID))
return ERROR(dictionary_wrong);
RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small");
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/* Skip the dictID check in fuzzing mode, because it makes the search
* harder.
*/
RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID),
dictionary_wrong);
#endif
if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
return 0;
}
static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret)
{
ZSTD_frameSizeInfo frameSizeInfo;
frameSizeInfo.compressedSize = ret;
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
return frameSizeInfo;
}
static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo;
memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize))
return ZSTD_findFrameSizeInfoLegacy(src, srcSize);
#endif
if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
&& (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize);
assert(ZSTD_isError(frameSizeInfo.compressedSize) ||
frameSizeInfo.compressedSize <= srcSize);
return frameSizeInfo;
} else {
const BYTE* ip = (const BYTE*)src;
const BYTE* const ipstart = ip;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
ZSTD_frameHeader zfh;
/* Extract Frame Header */
{ size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(ret))
return ZSTD_errorFrameSizeInfo(ret);
if (ret > 0)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
}
ip += zfh.headerSize;
remainingSize -= zfh.headerSize;
/* Iterate over each block */
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize))
return ZSTD_errorFrameSizeInfo(cBlockSize);
if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
ip += ZSTD_blockHeaderSize + cBlockSize;
remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
nbBlocks++;
if (blockProperties.lastBlock) break;
}
/* Final frame content checksum */
if (zfh.checksumFlag) {
if (remainingSize < 4)
return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong));
ip += 4;
}
frameSizeInfo.compressedSize = ip - ipstart;
frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN)
? zfh.frameContentSize
: nbBlocks * zfh.blockSizeMax;
return frameSizeInfo;
}
}
/** ZSTD_findFrameCompressedSize() :
* compatible with legacy mode
@ -443,52 +526,33 @@ static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t he
* @return : the compressed size of the frame starting at `src` */
size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
{
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize))
return ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
#endif
if ( (srcSize >= ZSTD_SKIPPABLEHEADERSIZE)
&& (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START ) {
return readSkippableFrameSize(src, srcSize);
} else {
const BYTE* ip = (const BYTE*)src;
const BYTE* const ipstart = ip;
size_t remainingSize = srcSize;
ZSTD_frameHeader zfh;
/* Extract Frame Header */
{ size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(ret)) return ret;
if (ret > 0) return ERROR(srcSize_wrong);
}
ip += zfh.headerSize;
remainingSize -= zfh.headerSize;
/* Loop on each block */
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
return ERROR(srcSize_wrong);
ip += ZSTD_blockHeaderSize + cBlockSize;
remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
if (blockProperties.lastBlock) break;
}
if (zfh.checksumFlag) { /* Final frame content checksum */
if (remainingSize < 4) return ERROR(srcSize_wrong);
ip += 4;
}
return ip - ipstart;
}
ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
return frameSizeInfo.compressedSize;
}
/** ZSTD_decompressBound() :
* compatible with legacy mode
* `src` must point to the start of a ZSTD frame or a skippeable frame
* `srcSize` must be at least as large as the frame contained
* @return : the maximum decompressed size of the compressed source
*/
unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize)
{
unsigned long long bound = 0;
/* Iterate over each frame */
while (srcSize > 0) {
ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize);
size_t const compressedSize = frameSizeInfo.compressedSize;
unsigned long long const decompressedBound = frameSizeInfo.decompressedBound;
if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR)
return ZSTD_CONTENTSIZE_ERROR;
assert(srcSize >= compressedSize);
src = (const BYTE*)src + compressedSize;
srcSize -= compressedSize;
bound += decompressedBound;
}
return bound;
}
/*-*************************************************************
@ -507,9 +571,10 @@ void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
}
/** ZSTD_insertBlock() :
insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
* insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
{
DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize);
ZSTD_checkContinuity(dctx, blockStart);
dctx->previousDstEnd = (const char*)blockStart + blockSize;
return blockSize;
@ -522,9 +587,9 @@ static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
DEBUGLOG(5, "ZSTD_copyRawBlock");
if (dst == NULL) {
if (srcSize == 0) return 0;
return ERROR(dstBuffer_null);
RETURN_ERROR(dstBuffer_null);
}
if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall);
memcpy(dst, src, srcSize);
return srcSize;
}
@ -535,9 +600,9 @@ static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity,
{
if (dst == NULL) {
if (regenSize == 0) return 0;
return ERROR(dstBuffer_null);
RETURN_ERROR(dstBuffer_null);
}
if (regenSize > dstCapacity) return ERROR(dstSize_tooSmall);
RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall);
memset(dst, b, regenSize);
return regenSize;
}
@ -560,15 +625,17 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr);
/* check */
if (remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN+ZSTD_blockHeaderSize)
return ERROR(srcSize_wrong);
RETURN_ERROR_IF(
remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize,
srcSize_wrong);
/* Frame Header */
{ size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_FRAMEHEADERSIZE_PREFIX);
{ size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal(
ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format);
if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
if (remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize)
return ERROR(srcSize_wrong);
CHECK_F( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) );
RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize,
srcSize_wrong);
FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) );
ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize;
}
@ -581,7 +648,7 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
ip += ZSTD_blockHeaderSize;
remainingSrcSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSrcSize) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong);
switch(blockProperties.blockType)
{
@ -596,7 +663,7 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
break;
case bt_reserved :
default:
return ERROR(corruption_detected);
RETURN_ERROR(corruption_detected);
}
if (ZSTD_isError(decodedSize)) return decodedSize;
@ -609,15 +676,15 @@ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
}
if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
if ((U64)(op-ostart) != dctx->fParams.frameContentSize) {
return ERROR(corruption_detected);
} }
RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize,
corruption_detected);
}
if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState);
U32 checkRead;
if (remainingSrcSize<4) return ERROR(checksum_wrong);
RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong);
checkRead = MEM_readLE32(ip);
if (checkRead != checkCalc) return ERROR(checksum_wrong);
RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong);
ip += 4;
remainingSrcSize -= 4;
}
@ -645,15 +712,15 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
dictSize = ZSTD_DDict_dictSize(ddict);
}
while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) {
while (srcSize >= ZSTD_startingInputLength(dctx->format)) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize)) {
size_t decodedSize;
size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
if (ZSTD_isError(frameSize)) return frameSize;
/* legacy support is not compatible with static dctx */
if (dctx->staticSize) return ERROR(memory_allocation);
RETURN_ERROR_IF(dctx->staticSize, memory_allocation,
"legacy support is not compatible with static dctx");
decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
@ -674,9 +741,8 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
(unsigned)magicNumber, ZSTD_MAGICNUMBER);
if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t const skippableSize = readSkippableFrameSize(src, srcSize);
if (ZSTD_isError(skippableSize))
return skippableSize;
if (srcSize < skippableSize) return ERROR(srcSize_wrong);
FORWARD_IF_ERROR(skippableSize);
assert(skippableSize <= srcSize);
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
@ -685,29 +751,29 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
if (ddict) {
/* we were called from ZSTD_decompress_usingDDict */
CHECK_F(ZSTD_decompressBegin_usingDDict(dctx, ddict));
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict));
} else {
/* this will initialize correctly with no dict if dict == NULL, so
* use this in all cases but ddict */
CHECK_F(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
}
ZSTD_checkContinuity(dctx, dst);
{ const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
&src, &srcSize);
if ( (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
&& (moreThan1Frame==1) ) {
/* at least one frame successfully completed,
* but following bytes are garbage :
* it's more likely to be a srcSize error,
* specifying more bytes than compressed size of frame(s).
* This error message replaces ERROR(prefix_unknown),
* which would be confusing, as the first header is actually correct.
* Note that one could be unlucky, it might be a corruption error instead,
* happening right at the place where we expect zstd magic bytes.
* But this is _much_ less likely than a srcSize field error. */
return ERROR(srcSize_wrong);
}
RETURN_ERROR_IF(
(ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
&& (moreThan1Frame==1),
srcSize_wrong,
"at least one frame successfully completed, but following "
"bytes are garbage: it's more likely to be a srcSize error, "
"specifying more bytes than compressed size of frame(s). This "
"error message replaces ERROR(prefix_unknown), which would be "
"confusing, as the first header is actually correct. Note that "
"one could be unlucky, it might be a corruption error instead, "
"happening right at the place where we expect zstd magic "
"bytes. But this is _much_ less likely than a srcSize field "
"error.");
if (ZSTD_isError(res)) return res;
assert(res <= dstCapacity);
dst = (BYTE*)dst + res;
@ -716,7 +782,7 @@ static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
moreThan1Frame = 1;
} /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
if (srcSize) return ERROR(srcSize_wrong); /* input not entirely consumed */
RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed");
return (BYTE*)dst - (BYTE*)dststart;
}
@ -730,9 +796,26 @@ size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
}
static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx)
{
switch (dctx->dictUses) {
default:
assert(0 /* Impossible */);
/* fall-through */
case ZSTD_dont_use:
ZSTD_clearDict(dctx);
return NULL;
case ZSTD_use_indefinitely:
return dctx->ddict;
case ZSTD_use_once:
dctx->dictUses = ZSTD_dont_use;
return dctx->ddict;
}
}
size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx));
}
@ -741,7 +824,7 @@ size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t sr
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
size_t regenSize;
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
RETURN_ERROR_IF(dctx==NULL, memory_allocation);
regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTD_freeDCtx(dctx);
return regenSize;
@ -791,8 +874,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
{
DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize);
/* Sanity check */
if (srcSize != dctx->expected)
return ERROR(srcSize_wrong); /* not allowed */
RETURN_ERROR_IF(srcSize != dctx->expected, srcSize_wrong, "not allowed");
if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
switch (dctx->stage)
@ -817,7 +899,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
case ZSTDds_decodeFrameHeader:
assert(src != NULL);
memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize);
CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
dctx->expected = ZSTD_blockHeaderSize;
dctx->stage = ZSTDds_decodeBlockHeader;
return 0;
@ -826,6 +908,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
{ blockProperties_t bp;
size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum");
dctx->expected = cBlockSize;
dctx->bType = bp.blockType;
dctx->rleSize = bp.origSize;
@ -867,19 +950,20 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
break;
case bt_reserved : /* should never happen */
default:
return ERROR(corruption_detected);
RETURN_ERROR(corruption_detected);
}
if (ZSTD_isError(rSize)) return rSize;
RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum");
DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize);
dctx->decodedSize += rSize;
if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize);
if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
if (dctx->decodedSize != dctx->fParams.frameContentSize) {
return ERROR(corruption_detected);
} }
RETURN_ERROR_IF(
dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN
&& dctx->decodedSize != dctx->fParams.frameContentSize,
corruption_detected);
if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
dctx->expected = 4;
dctx->stage = ZSTDds_checkChecksum;
@ -900,7 +984,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
{ U32 const h32 = (U32)XXH64_digest(&dctx->xxhState);
U32 const check32 = MEM_readLE32(src);
DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32);
if (check32 != h32) return ERROR(checksum_wrong);
RETURN_ERROR_IF(check32 != h32, checksum_wrong);
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
@ -921,7 +1005,7 @@ size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, c
default:
assert(0); /* impossible */
return ERROR(GENERIC); /* some compiler require default to do something */
RETURN_ERROR(GENERIC); /* some compiler require default to do something */
}
}
@ -945,7 +1029,7 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
if (dictSize <= 8) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted);
assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */
dictPtr += 8; /* skip header = magic + dictID */
@ -964,16 +1048,16 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
dictPtr, dictEnd - dictPtr,
workspace, workspaceSize);
#endif
if (HUF_isError(hSize)) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted);
dictPtr += hSize;
}
{ short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff, offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeMaxValue > MaxOff) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted);
RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted);
RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted);
ZSTD_buildFSETable( entropy->OFTable,
offcodeNCount, offcodeMaxValue,
OF_base, OF_bits,
@ -984,9 +1068,9 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthMaxValue > MaxML) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted);
RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted);
RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted);
ZSTD_buildFSETable( entropy->MLTable,
matchlengthNCount, matchlengthMaxValue,
ML_base, ML_bits,
@ -997,9 +1081,9 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthMaxValue > MaxLL) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted);
RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted);
RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted);
ZSTD_buildFSETable( entropy->LLTable,
litlengthNCount, litlengthMaxValue,
LL_base, LL_bits,
@ -1007,12 +1091,13 @@ ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
dictPtr += litlengthHeaderSize;
}
if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted);
{ int i;
size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
for (i=0; i<3; i++) {
U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
if (rep==0 || rep >= dictContentSize) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(rep==0 || rep > dictContentSize,
dictionary_corrupted);
entropy->rep[i] = rep;
} }
@ -1030,7 +1115,7 @@ static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict
/* load entropy tables */
{ size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize);
if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted);
RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted);
dict = (const char*)dict + eSize;
dictSize -= eSize;
}
@ -1064,9 +1149,11 @@ size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
CHECK_F( ZSTD_decompressBegin(dctx) );
FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) );
if (dict && dictSize)
CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted);
RETURN_ERROR_IF(
ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)),
dictionary_corrupted);
return 0;
}
@ -1085,7 +1172,7 @@ size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
DEBUGLOG(4, "DDict is %s",
dctx->ddictIsCold ? "~cold~" : "hot!");
}
CHECK_F( ZSTD_decompressBegin(dctx) );
FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) );
if (ddict) { /* NULL ddict is equivalent to no dictionary */
ZSTD_copyDDictParameters(dctx, ddict);
}
@ -1104,7 +1191,7 @@ unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
}
/*! ZSTD_getDictID_fromFrame() :
* Provides the dictID required to decompresse frame stored within `src`.
* Provides the dictID required to decompress frame stored within `src`.
* If @return == 0, the dictID could not be decoded.
* This could for one of the following reasons :
* - The frame does not require a dictionary (most common case).
@ -1176,15 +1263,14 @@ size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
ZSTD_freeDDict(dctx->ddictLocal);
if (dict && dictSize >= 8) {
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
ZSTD_clearDict(dctx);
if (dict && dictSize != 0) {
dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem);
if (dctx->ddictLocal == NULL) return ERROR(memory_allocation);
} else {
dctx->ddictLocal = NULL;
RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation);
dctx->ddict = dctx->ddictLocal;
dctx->dictUses = ZSTD_use_indefinitely;
}
dctx->ddict = dctx->ddictLocal;
return 0;
}
@ -1200,7 +1286,9 @@ size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSi
size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType);
FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType));
dctx->dictUses = ZSTD_use_once;
return 0;
}
size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize)
@ -1210,22 +1298,21 @@ size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSiz
/* ZSTD_initDStream_usingDict() :
* return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX.
* return : expected size, aka ZSTD_startingInputLength().
* this function cannot fail */
size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
{
DEBUGLOG(4, "ZSTD_initDStream_usingDict");
zds->streamStage = zdss_init;
zds->noForwardProgress = 0;
CHECK_F( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) );
return ZSTD_FRAMEHEADERSIZE_PREFIX;
FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) );
FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) );
return ZSTD_startingInputLength(zds->format);
}
/* note : this variant can't fail */
size_t ZSTD_initDStream(ZSTD_DStream* zds)
{
DEBUGLOG(4, "ZSTD_initDStream");
return ZSTD_initDStream_usingDict(zds, NULL, 0);
return ZSTD_initDStream_usingDDict(zds, NULL);
}
/* ZSTD_initDStream_usingDDict() :
@ -1233,29 +1320,29 @@ size_t ZSTD_initDStream(ZSTD_DStream* zds)
* this function cannot fail */
size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
{
size_t const initResult = ZSTD_initDStream(dctx);
dctx->ddict = ddict;
return initResult;
FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) );
FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) );
return ZSTD_startingInputLength(dctx->format);
}
/* ZSTD_resetDStream() :
* return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX.
* return : expected size, aka ZSTD_startingInputLength().
* this function cannot fail */
size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
{
DEBUGLOG(4, "ZSTD_resetDStream");
dctx->streamStage = zdss_loadHeader;
dctx->lhSize = dctx->inPos = dctx->outStart = dctx->outEnd = 0;
dctx->legacyVersion = 0;
dctx->hostageByte = 0;
return ZSTD_FRAMEHEADERSIZE_PREFIX;
FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only));
return ZSTD_startingInputLength(dctx->format);
}
size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
dctx->ddict = ddict;
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
ZSTD_clearDict(dctx);
if (ddict) {
dctx->ddict = ddict;
dctx->dictUses = ZSTD_use_indefinitely;
}
return 0;
}
@ -1267,9 +1354,9 @@ size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize)
ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax);
size_t const min = (size_t)1 << bounds.lowerBound;
size_t const max = (size_t)1 << bounds.upperBound;
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
if (maxWindowSize < min) return ERROR(parameter_outOfBound);
if (maxWindowSize > max) return ERROR(parameter_outOfBound);
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound);
RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound);
dctx->maxWindowSize = maxWindowSize;
return 0;
}
@ -1311,15 +1398,15 @@ static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value)
}
#define CHECK_DBOUNDS(p,v) { \
if (!ZSTD_dParam_withinBounds(p, v)) \
return ERROR(parameter_outOfBound); \
RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound); \
}
size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
switch(dParam) {
case ZSTD_d_windowLogMax:
if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT;
CHECK_DBOUNDS(ZSTD_d_windowLogMax, value);
dctx->maxWindowSize = ((size_t)1) << value;
return 0;
@ -1329,19 +1416,20 @@ size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value
return 0;
default:;
}
return ERROR(parameter_unsupported);
RETURN_ERROR(parameter_unsupported);
}
size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset)
{
if ( (reset == ZSTD_reset_session_only)
|| (reset == ZSTD_reset_session_and_parameters) ) {
(void)ZSTD_initDStream(dctx);
dctx->streamStage = zdss_init;
dctx->noForwardProgress = 0;
}
if ( (reset == ZSTD_reset_parameters)
|| (reset == ZSTD_reset_session_and_parameters) ) {
if (dctx->streamStage != zdss_init)
return ERROR(stage_wrong);
RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong);
ZSTD_clearDict(dctx);
dctx->format = ZSTD_f_zstd1;
dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
}
@ -1360,7 +1448,8 @@ size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long
unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2);
unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
size_t const minRBSize = (size_t) neededSize;
if ((unsigned long long)minRBSize != neededSize) return ERROR(frameParameter_windowTooLarge);
RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize,
frameParameter_windowTooLarge);
return minRBSize;
}
@ -1378,9 +1467,9 @@ size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize)
ZSTD_frameHeader zfh;
size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(err)) return err;
if (err>0) return ERROR(srcSize_wrong);
if (zfh.windowSize > windowSizeMax)
return ERROR(frameParameter_windowTooLarge);
RETURN_ERROR_IF(err>0, srcSize_wrong);
RETURN_ERROR_IF(zfh.windowSize > windowSizeMax,
frameParameter_windowTooLarge);
return ZSTD_estimateDStreamSize((size_t)zfh.windowSize);
}
@ -1406,16 +1495,16 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
U32 someMoreWork = 1;
DEBUGLOG(5, "ZSTD_decompressStream");
if (input->pos > input->size) { /* forbidden */
DEBUGLOG(5, "in: pos: %u vs size: %u",
(U32)input->pos, (U32)input->size);
return ERROR(srcSize_wrong);
}
if (output->pos > output->size) { /* forbidden */
DEBUGLOG(5, "out: pos: %u vs size: %u",
(U32)output->pos, (U32)output->size);
return ERROR(dstSize_tooSmall);
}
RETURN_ERROR_IF(
input->pos > input->size,
srcSize_wrong,
"forbidden. in: pos: %u vs size: %u",
(U32)input->pos, (U32)input->size);
RETURN_ERROR_IF(
output->pos > output->size,
dstSize_tooSmall,
"forbidden. out: pos: %u vs size: %u",
(U32)output->pos, (U32)output->size);
DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos));
while (someMoreWork) {
@ -1423,15 +1512,18 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
{
case zdss_init :
DEBUGLOG(5, "stage zdss_init => transparent reset ");
ZSTD_resetDStream(zds); /* transparent reset on starting decoding a new frame */
zds->streamStage = zdss_loadHeader;
zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
zds->legacyVersion = 0;
zds->hostageByte = 0;
/* fall-through */
case zdss_loadHeader :
DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
if (zds->legacyVersion) {
/* legacy support is incompatible with static dctx */
if (zds->staticSize) return ERROR(memory_allocation);
RETURN_ERROR_IF(zds->staticSize, memory_allocation,
"legacy support is incompatible with static dctx");
{ size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
if (hint==0) zds->streamStage = zdss_init;
return hint;
@ -1443,12 +1535,13 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
if (legacyVersion) {
const void* const dict = zds->ddict ? ZSTD_DDict_dictContent(zds->ddict) : NULL;
size_t const dictSize = zds->ddict ? ZSTD_DDict_dictSize(zds->ddict) : 0;
ZSTD_DDict const* const ddict = ZSTD_getDDict(zds);
const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL;
size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0;
DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion);
/* legacy support is incompatible with static dctx */
if (zds->staticSize) return ERROR(memory_allocation);
CHECK_F(ZSTD_initLegacyStream(&zds->legacyContext,
RETURN_ERROR_IF(zds->staticSize, memory_allocation,
"legacy support is incompatible with static dctx");
FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext,
zds->previousLegacyVersion, legacyVersion,
dict, dictSize));
zds->legacyVersion = zds->previousLegacyVersion = legacyVersion;
@ -1469,7 +1562,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
zds->lhSize += remainingInput;
}
input->pos = input->size;
return (MAX(ZSTD_FRAMEHEADERSIZE_MIN, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
}
assert(ip != NULL);
memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
@ -1482,7 +1575,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart);
if (cSize <= (size_t)(iend-istart)) {
/* shortcut : using single-pass mode */
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, zds->ddict);
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, ZSTD_getDDict(zds));
if (ZSTD_isError(decompressedSize)) return decompressedSize;
DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
ip = istart + cSize;
@ -1495,13 +1588,13 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
/* Consume header (see ZSTDds_decodeFrameHeader) */
DEBUGLOG(4, "Consume header");
CHECK_F(ZSTD_decompressBegin_usingDDict(zds, zds->ddict));
FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)));
if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
zds->stage = ZSTDds_skipFrame;
} else {
CHECK_F(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize));
FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize));
zds->expected = ZSTD_blockHeaderSize;
zds->stage = ZSTDds_decodeBlockHeader;
}
@ -1511,7 +1604,8 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
(U32)(zds->fParams.windowSize >>10),
(U32)(zds->maxWindowSize >> 10) );
zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
if (zds->fParams.windowSize > zds->maxWindowSize) return ERROR(frameParameter_windowTooLarge);
RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize,
frameParameter_windowTooLarge);
/* Adapt buffer sizes to frame header instructions */
{ size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
@ -1525,14 +1619,15 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
if (zds->staticSize) { /* static DCtx */
DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize);
assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */
if (bufferSize > zds->staticSize - sizeof(ZSTD_DCtx))
return ERROR(memory_allocation);
RETURN_ERROR_IF(
bufferSize > zds->staticSize - sizeof(ZSTD_DCtx),
memory_allocation);
} else {
ZSTD_free(zds->inBuff, zds->customMem);
zds->inBuffSize = 0;
zds->outBuffSize = 0;
zds->inBuff = (char*)ZSTD_malloc(bufferSize, zds->customMem);
if (zds->inBuff == NULL) return ERROR(memory_allocation);
RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation);
}
zds->inBuffSize = neededInBuffSize;
zds->outBuff = zds->inBuff + zds->inBuffSize;
@ -1574,7 +1669,9 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
if (isSkipFrame) {
loadedSize = MIN(toLoad, (size_t)(iend-ip));
} else {
if (toLoad > zds->inBuffSize - zds->inPos) return ERROR(corruption_detected); /* should never happen */
RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos,
corruption_detected,
"should never happen");
loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip);
}
ip += loadedSize;
@ -1615,7 +1712,7 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
default:
assert(0); /* impossible */
return ERROR(GENERIC); /* some compiler require default to do something */
RETURN_ERROR(GENERIC); /* some compiler require default to do something */
} }
/* result */
@ -1624,8 +1721,8 @@ size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inB
if ((ip==istart) && (op==ostart)) { /* no forward progress */
zds->noForwardProgress ++;
if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
if (op==oend) return ERROR(dstSize_tooSmall);
if (ip==iend) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(op==oend, dstSize_tooSmall);
RETURN_ERROR_IF(ip==iend, srcSize_wrong);
assert(0);
}
} else {

View File

@ -56,14 +56,15 @@ static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr)
{
if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong);
{ U32 const cBlockHeader = MEM_readLE24(src);
U32 const cSize = cBlockHeader >> 3;
bpPtr->lastBlock = cBlockHeader & 1;
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
bpPtr->origSize = cSize; /* only useful for RLE */
if (bpPtr->blockType == bt_rle) return 1;
if (bpPtr->blockType == bt_reserved) return ERROR(corruption_detected);
RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected);
return cSize;
}
}
@ -78,7 +79,8 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected);
{ const BYTE* const istart = (const BYTE*) src;
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
@ -86,11 +88,12 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
switch(litEncType)
{
case set_repeat:
if (dctx->litEntropy==0) return ERROR(dictionary_corrupted);
DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted);
/* fall-through */
case set_compressed:
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
{ size_t lhSize, litSize, litCSize;
U32 singleStream=0;
U32 const lhlCode = (istart[0] >> 2) & 3;
@ -115,11 +118,11 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
/* 2 - 2 - 18 - 18 */
lhSize = 5;
litSize = (lhc >> 4) & 0x3FFFF;
litCSize = (lhc >> 22) + (istart[4] << 10);
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
break;
}
if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected);
/* prefetch huffman table if cold */
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
@ -157,7 +160,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
}
}
if (HUF_isError(hufSuccess)) return ERROR(corruption_detected);
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
@ -187,7 +190,7 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected);
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
@ -216,17 +219,17 @@ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
break;
}
if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected);
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected);
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
return ERROR(corruption_detected); /* impossible */
RETURN_ERROR(corruption_detected, "impossible");
}
}
}
@ -390,7 +393,8 @@ ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
assert(normalizedCounter[s]>=0);
symbolNext[s] = (U16)normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
@ -436,8 +440,8 @@ static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymb
switch(type)
{
case set_rle :
if (!srcSize) return ERROR(srcSize_wrong);
if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
RETURN_ERROR_IF(!srcSize, srcSize_wrong);
RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected);
{ U32 const symbol = *(const BYTE*)src;
U32 const baseline = baseValue[symbol];
U32 const nbBits = nbAdditionalBits[symbol];
@ -449,7 +453,7 @@ static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymb
*DTablePtr = defaultTable;
return 0;
case set_repeat:
if (!flagRepeatTable) return ERROR(corruption_detected);
RETURN_ERROR_IF(!flagRepeatTable, corruption_detected);
/* prefetch FSE table if used */
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
const void* const pStart = *DTablePtr;
@ -461,15 +465,15 @@ static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymb
{ unsigned tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
if (FSE_isError(headerSize)) return ERROR(corruption_detected);
if (tableLog > maxLog) return ERROR(corruption_detected);
RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected);
RETURN_ERROR_IF(tableLog > maxLog, corruption_detected);
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
*DTablePtr = DTableSpace;
return headerSize;
}
default : /* impossible */
default :
assert(0);
return ERROR(GENERIC);
RETURN_ERROR(GENERIC, "impossible");
}
}
@ -483,28 +487,28 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
/* check */
if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong);
/* SeqHead */
nbSeq = *ip++;
if (!nbSeq) {
*nbSeqPtr=0;
if (srcSize != 1) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize != 1, srcSize_wrong);
return 1;
}
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
if (ip+2 > iend) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong);
nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
} else {
if (ip >= iend) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(ip >= iend, srcSize_wrong);
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
/* FSE table descriptors */
if (ip+4 > iend) return ERROR(srcSize_wrong); /* minimum possible size */
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong); /* minimum possible size: 1 byte for symbol encoding types */
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
@ -517,7 +521,7 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
LL_base, LL_bits,
LL_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(llhSize)) return ERROR(corruption_detected);
RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected);
ip += llhSize;
}
@ -527,7 +531,7 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
OF_base, OF_bits,
OF_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(ofhSize)) return ERROR(corruption_detected);
RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected);
ip += ofhSize;
}
@ -537,7 +541,7 @@ size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
ML_base, ML_bits,
ML_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(mlhSize)) return ERROR(corruption_detected);
RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected);
ip += mlhSize;
}
}
@ -569,38 +573,118 @@ typedef struct {
size_t pos;
} seqState_t;
/*! ZSTD_overlapCopy8() :
* Copies 8 bytes from ip to op and updates op and ip where ip <= op.
* If the offset is < 8 then the offset is spread to at least 8 bytes.
*
* Precondition: *ip <= *op
* Postcondition: *op - *op >= 8
*/
static void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
assert(*ip <= *op);
if (offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[offset];
(*op)[0] = (*ip)[0];
(*op)[1] = (*ip)[1];
(*op)[2] = (*ip)[2];
(*op)[3] = (*ip)[3];
*ip += dec32table[offset];
ZSTD_copy4(*op+4, *ip);
*ip -= sub2;
} else {
ZSTD_copy8(*op, *ip);
}
*ip += 8;
*op += 8;
assert(*op - *ip >= 8);
}
/* ZSTD_execSequenceLast7():
* exceptional case : decompress a match starting within last 7 bytes of output buffer.
* requires more careful checks, to ensure there is no overflow.
* performance does not matter though.
* note : this case is supposed to be never generated "naturally" by reference encoder,
* since in most cases it needs at least 8 bytes to look for a match.
* but it's allowed by the specification. */
/*! ZSTD_safecopy() :
* Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
* and write up to 16 bytes past oend_w (op >= oend_w is allowed).
* This function is only called in the uncommon case where the sequence is near the end of the block. It
* should be fast for a single long sequence, but can be slow for several short sequences.
*
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
* The src buffer must be before the dst buffer.
*/
static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
ptrdiff_t const diff = op - ip;
BYTE* const oend = op + length;
assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
(ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
if (length < 8) {
/* Handle short lengths. */
while (op < oend) *op++ = *ip++;
return;
}
if (ovtype == ZSTD_overlap_src_before_dst) {
/* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
assert(length >= 8);
ZSTD_overlapCopy8(&op, &ip, diff);
assert(op - ip >= 8);
assert(op <= oend);
}
if (oend <= oend_w) {
/* No risk of overwrite. */
ZSTD_wildcopy(op, ip, length, ovtype);
return;
}
if (op <= oend_w) {
/* Wildcopy until we get close to the end. */
assert(oend > oend_w);
ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
ip += oend_w - op;
op = oend_w;
}
/* Handle the leftovers. */
while (op < oend) *op++ = *ip++;
}
/* ZSTD_execSequenceEnd():
* This version handles cases that are near the end of the output buffer. It requires
* more careful checks to make sure there is no overflow. By separating out these hard
* and unlikely cases, we can speed up the common cases.
*
* NOTE: This function needs to be fast for a single long sequence, but doesn't need
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
*/
FORCE_NOINLINE
size_t ZSTD_execSequenceLast7(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
size_t ZSTD_execSequenceEnd(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
/* check */
if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must fit within dstBuffer */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* try to read beyond literal buffer */
/* bounds checks */
assert(oLitEnd < oMatchEnd);
RETURN_ERROR_IF(oMatchEnd > oend, dstSize_tooSmall, "last match must fit within dstBuffer");
RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "try to read beyond literal buffer");
/* copy literals */
while (op < oLitEnd) *op++ = *(*litPtr)++;
ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
op = oLitEnd;
*litPtr = iLitEnd;
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base)) {
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
match = dictEnd - (base-match);
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected);
match = dictEnd - (prefixStart-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
@ -610,13 +694,12 @@ size_t ZSTD_execSequenceLast7(BYTE* op,
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
match = prefixStart;
} }
while (op < oMatchEnd) *op++ = *match++;
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
return sequenceLength;
}
HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
@ -630,23 +713,32 @@ size_t ZSTD_execSequence(BYTE* op,
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
/* Errors and uncommon cases handled here. */
assert(oLitEnd < oMatchEnd);
if (iLitEnd > litLimit || oMatchEnd > oend_w)
return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
/* copy Literals */
ZSTD_copy8(op, *litPtr);
if (sequence.litLength > 8)
ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
/* Copy Literals:
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
* We likely don't need the full 32-byte wildcopy.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(op, (*litPtr));
if (sequence.litLength > 16) {
ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
}
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
/* Copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix -> go into extDict */
if (sequence.offset > (size_t)(oLitEnd - virtualStart))
return ERROR(corruption_detected);
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected);
match = dictEnd + (match - prefixStart);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
@ -658,121 +750,33 @@ size_t ZSTD_execSequence(BYTE* op,
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
if (op > oend_w || sequence.matchLength < MINMATCH) {
U32 i;
for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
return sequenceLength;
}
} }
/* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
/* Match within prefix of 1 or more bytes */
assert(op <= oMatchEnd);
assert(oMatchEnd <= oend_w);
assert(match >= prefixStart);
assert(sequence.matchLength >= 1);
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= sub2;
} else {
ZSTD_copy8(op, match);
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
* without overlap checking.
*/
if (sequence.offset >= WILDCOPY_VECLEN) {
/* We bet on a full wildcopy for matches, since we expect matches to be
* longer than literals (in general). In silesia, ~10% of matches are longer
* than 16 bytes.
*/
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
return sequenceLength;
}
op += 8; match += 8;
assert(sequence.offset < WILDCOPY_VECLEN);
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_w) {
ZSTD_wildcopy(op, match, oend_w - op);
match += oend_w - op;
op = oend_w;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
/* Copy 8 bytes and spread the offset to be >= 8. */
ZSTD_overlapCopy8(&op, &match, sequence.offset);
HINT_INLINE
size_t ZSTD_execSequenceLong(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const dictStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = sequence.match;
/* check */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
if (oLitEnd > oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, dictStart, dictEnd);
/* copy Literals */
ZSTD_copy8(op, *litPtr); /* note : op <= oLitEnd <= oend_w == oend - 8 */
if (sequence.litLength > 8)
ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - dictStart)) return ERROR(corruption_detected);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
if (op > oend_w || sequence.matchLength < MINMATCH) {
U32 i;
for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
return sequenceLength;
}
} }
assert(op <= oend_w);
assert(sequence.matchLength >= MINMATCH);
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= sub2;
} else {
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_w) {
ZSTD_wildcopy(op, match, oend_w - op);
match += oend_w - op;
op = oend_w;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
/* If the match length is > 8 bytes, then continue with the wildcopy. */
if (sequence.matchLength > 8) {
assert(op < oMatchEnd);
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
}
return sequenceLength;
}
@ -801,7 +805,7 @@ ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
* offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
* bits before reloading. This value is the maximum number of bytes we read
* after reloading when we are decoding long offets.
* after reloading when we are decoding long offsets.
*/
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
@ -889,6 +893,7 @@ ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
}
FORCE_INLINE_TEMPLATE size_t
DONT_VECTORIZE
ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
@ -911,11 +916,18 @@ ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
seqState_t seqState;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected);
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
ZSTD_STATIC_ASSERT(
BIT_DStream_unfinished < BIT_DStream_completed &&
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
BIT_DStream_completed < BIT_DStream_overflow);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
nbSeq--;
{ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
@ -927,14 +939,15 @@ ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
/* check if reached exact end */
DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
if (nbSeq) return ERROR(corruption_detected);
RETURN_ERROR_IF(nbSeq, corruption_detected);
RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected);
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
@ -1066,7 +1079,9 @@ ZSTD_decompressSequencesLong_body(
seqState.pos = (size_t)(op-prefixStart);
seqState.dictEnd = dictEnd;
assert(iend >= ip);
CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
RETURN_ERROR_IF(
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
corruption_detected);
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
@ -1076,23 +1091,23 @@ ZSTD_decompressSequencesLong_body(
sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
}
if (seqNb<seqAdvance) return ERROR(corruption_detected);
RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected);
/* decode and decompress */
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
sequences[seqNb & STORED_SEQS_MASK] = sequence;
op += oneSeqSize;
}
if (seqNb<nbSeq) return ERROR(corruption_detected);
RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected);
/* finish queue */
seqNb -= seqAdvance;
for ( ; seqNb<nbSeq ; seqNb++) {
size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
@ -1103,7 +1118,7 @@ ZSTD_decompressSequencesLong_body(
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall);
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
@ -1127,6 +1142,7 @@ ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static TARGET_ATTRIBUTE("bmi2") size_t
DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
@ -1176,7 +1192,7 @@ ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
/* ZSTD_decompressSequencesLong() :
* decompression function triggered when a minimum share of offsets is considered "long",
* aka out of cache.
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes mearning "farther than memory cache distance".
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
* This function will try to mitigate main memory latency through the use of prefetching */
static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
@ -1240,7 +1256,7 @@ ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
if (srcSize >= ZSTD_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);
RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong);
/* Decode literals section */
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);

View File

@ -89,6 +89,12 @@ typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
typedef enum { zdss_init=0, zdss_loadHeader,
zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
typedef enum {
ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
} ZSTD_dictUses_e;
struct ZSTD_DCtx_s
{
const ZSTD_seqSymbol* LLTptr;
@ -123,6 +129,7 @@ struct ZSTD_DCtx_s
const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
U32 dictID;
int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
ZSTD_dictUses_e dictUses;
/* streaming */
ZSTD_dStreamStage streamStage;

View File

@ -36,16 +36,17 @@ extern "C" {
*****************************************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
it is generally possible to disable them,
typically with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS */
* it is generally possible to disable them,
* typically with -Wno-deprecated-declarations for gcc
* or _CRT_SECURE_NO_WARNINGS in Visual.
* Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS
*/
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
# elif (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__)
# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))

View File

@ -391,7 +391,7 @@ static void COVER_group(COVER_ctx_t *ctx, const void *group,
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer d is in the dictionay we set F(d) = 0.
* Once the dmer d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
COVER_map_t *activeDmers, U32 begin,
@ -435,7 +435,7 @@ static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
activeSegment.begin += 1;
*delDmerOcc -= 1;
/* If this is the last occurence of the dmer, subtract its score */
/* If this is the last occurrence of the dmer, subtract its score */
if (*delDmerOcc == 0) {
COVER_map_remove(activeDmers, delDmer);
activeSegment.score -= freqs[delDmer];
@ -526,10 +526,10 @@ static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can used multiple
* times.
* Returns 1 on success or zero on error.
* Returns 0 on success or error code on error.
* The context must be destroyed with `COVER_ctx_destroy()`.
*/
static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
unsigned d, double splitPoint) {
const BYTE *const samples = (const BYTE *)samplesBuffer;
@ -544,17 +544,17 @@ static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
return 0;
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
return 0;
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
return 0;
return ERROR(srcSize_wrong);
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
@ -577,7 +577,7 @@ static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
COVER_ctx_destroy(ctx);
return 0;
return ERROR(memory_allocation);
}
ctx->freqs = NULL;
ctx->d = d;
@ -624,7 +624,40 @@ static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
(ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
ctx->freqs = ctx->suffix;
ctx->suffix = NULL;
return 1;
return 0;
}
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
{
const double ratio = (double)nbDmers / maxDictSize;
if (ratio >= 10) {
return;
}
LOCALDISPLAYLEVEL(displayLevel, 1,
"WARNING: The maximum dictionary size %u is too large "
"compared to the source size %u! "
"size(source)/size(dictionary) = %f, but it should be >= "
"10! This may lead to a subpar dictionary! We recommend "
"training on sources at least 10x, and preferably 100x "
"the size of the dictionary! \n", (U32)maxDictSize,
(U32)nbDmers, ratio);
}
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
U32 nbDmers, U32 k, U32 passes)
{
const U32 minEpochSize = k * 10;
COVER_epoch_info_t epochs;
epochs.num = MAX(1, maxDictSize / k / passes);
epochs.size = nbDmers / epochs.num;
if (epochs.size >= minEpochSize) {
assert(epochs.size * epochs.num <= nbDmers);
return epochs;
}
epochs.size = MIN(minEpochSize, nbDmers);
epochs.num = nbDmers / epochs.size;
assert(epochs.size * epochs.num <= nbDmers);
return epochs;
}
/**
@ -636,28 +669,34 @@ static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
ZDICT_cover_params_t parameters) {
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data up into epochs of equal size.
* We will select at least one segment from each epoch.
*/
const unsigned epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k / 4));
const unsigned epochSize = (U32)(ctx->suffixSize / epochs);
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
epochs, epochSize);
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
const U32 epochBegin = (U32)(epoch * epochSize);
const U32 epochEnd = epochBegin + epochSize;
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = COVER_selectSegment(
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
/* If the segment covers no dmers, then we are out of content */
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
break;
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize < parameters.d) {
@ -690,11 +729,11 @@ ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
/* Checks */
if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(GENERIC);
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
@ -702,14 +741,18 @@ ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
return ERROR(dstSize_tooSmall);
}
/* Initialize context and activeDmers */
if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
parameters.d, parameters.splitPoint)) {
return ERROR(GENERIC);
{
size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
parameters.d, parameters.splitPoint);
if (ZSTD_isError(initVal)) {
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
COVER_ctx_destroy(&ctx);
return ERROR(GENERIC);
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Building dictionary\n");
@ -770,7 +813,7 @@ size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
cctx, dst, dstCapacity, samples + offsets[i],
samplesSizes[i], cdict);
if (ZSTD_isError(size)) {
totalCompressedSize = ERROR(GENERIC);
totalCompressedSize = size;
goto _compressCleanup;
}
totalCompressedSize += size;
@ -846,9 +889,11 @@ void COVER_best_start(COVER_best_t *best) {
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
ZDICT_cover_params_t parameters, void *dict,
size_t dictSize) {
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection) {
void* dict = selection.dictContent;
size_t compressedSize = selection.totalCompressedSize;
size_t dictSize = selection.dictSize;
if (!best) {
return;
}
@ -874,10 +919,12 @@ void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
}
}
/* Save the dictionary, parameters, and size */
memcpy(best->dict, dict, dictSize);
best->dictSize = dictSize;
best->parameters = parameters;
best->compressedSize = compressedSize;
if (dict) {
memcpy(best->dict, dict, dictSize);
best->dictSize = dictSize;
best->parameters = parameters;
best->compressedSize = compressedSize;
}
}
if (liveJobs == 0) {
ZSTD_pthread_cond_broadcast(&best->cond);
@ -886,6 +933,111 @@ void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
}
}
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
COVER_dictSelection_t selection = { NULL, 0, error };
return selection;
}
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
}
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
free(selection.dictContent);
}
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
size_t largestDict = 0;
size_t largestCompressed = 0;
BYTE* customDictContentEnd = customDictContent + dictContentSize;
BYTE * largestDictbuffer = (BYTE *)malloc(dictContentSize);
BYTE * candidateDictBuffer = (BYTE *)malloc(dictContentSize);
double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
if (!largestDictbuffer || !candidateDictBuffer) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
/* Initial dictionary size and compressed size */
memcpy(largestDictbuffer, customDictContent, dictContentSize);
dictContentSize = ZDICT_finalizeDictionary(
largestDictbuffer, dictContentSize, customDictContent, dictContentSize,
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
if (ZDICT_isError(dictContentSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
samplesBuffer, offsets,
nbCheckSamples, nbSamples,
largestDictbuffer, dictContentSize);
if (ZSTD_isError(totalCompressedSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(totalCompressedSize);
}
if (params.shrinkDict == 0) {
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
free(candidateDictBuffer);
return selection;
}
largestDict = dictContentSize;
largestCompressed = totalCompressedSize;
dictContentSize = ZDICT_DICTSIZE_MIN;
/* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
while (dictContentSize < largestDict) {
memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
dictContentSize = ZDICT_finalizeDictionary(
candidateDictBuffer, dictContentSize, customDictContentEnd - dictContentSize, dictContentSize,
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
if (ZDICT_isError(dictContentSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(dictContentSize);
}
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
samplesBuffer, offsets,
nbCheckSamples, nbSamples,
candidateDictBuffer, dictContentSize);
if (ZSTD_isError(totalCompressedSize)) {
free(largestDictbuffer);
free(candidateDictBuffer);
return COVER_dictSelectionError(totalCompressedSize);
}
if (totalCompressedSize <= largestCompressed * regressionTolerance) {
COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
free(largestDictbuffer);
return selection;
}
dictContentSize *= 2;
}
dictContentSize = largestDict;
totalCompressedSize = largestCompressed;
{
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
free(candidateDictBuffer);
return selection;
}
}
/**
* Parameters for COVER_tryParameters().
*/
@ -911,6 +1063,7 @@ static void COVER_tryParameters(void *opaque) {
/* Allocate space for hash table, dict, and freqs */
COVER_map_t activeDmers;
BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
@ -926,29 +1079,21 @@ static void COVER_tryParameters(void *opaque) {
{
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
dictBufferCapacity, parameters);
dictBufferCapacity = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples,
parameters.zParams);
if (ZDICT_isError(dictBufferCapacity)) {
DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
selection = COVER_selectDict(dict + tail, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
/* Check total compressed size */
totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes,
ctx->samples, ctx->offsets,
ctx->nbTrainSamples, ctx->nbSamples,
dict, dictBufferCapacity);
_cleanup:
COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
dictBufferCapacity);
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
COVER_map_destroy(&activeDmers);
if (dict) {
free(dict);
}
COVER_dictSelectionFree(selection);
if (freqs) {
free(freqs);
}
@ -970,6 +1115,7 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned shrinkDict = 0;
/* Local variables */
const int displayLevel = parameters->zParams.notificationLevel;
unsigned iteration = 1;
@ -977,19 +1123,20 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
return ERROR(GENERIC);
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
@ -1013,11 +1160,18 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
/* Initialize the context for this value of d */
COVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return ERROR(GENERIC);
{
const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
@ -1030,7 +1184,7 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
COVER_best_destroy(&best);
COVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(GENERIC);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
@ -1040,6 +1194,7 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
data->parameters.zParams.notificationLevel = g_displayLevel;
/* Check the parameters */
if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {

View File

@ -38,6 +38,44 @@ typedef struct {
U32 score;
} COVER_segment_t;
/**
*Number of epochs and size of each epoch.
*/
typedef struct {
U32 num;
U32 size;
} COVER_epoch_info_t;
/**
* Struct used for the dictionary selection function.
*/
typedef struct COVER_dictSelection {
BYTE* dictContent;
size_t dictSize;
size_t totalCompressedSize;
} COVER_dictSelection_t;
/**
* Computes the number of epochs and the size of each epoch.
* We will make sure that each epoch gets at least 10 * k bytes.
*
* The COVER algorithms divide the data up into epochs of equal size and
* select one segment from each epoch.
*
* @param maxDictSize The maximum allowed dictionary size.
* @param nbDmers The number of dmers we are training on.
* @param k The parameter k (segment size).
* @param passes The target number of passes over the dmer corpus.
* More passes means a better dictionary.
*/
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers,
U32 k, U32 passes);
/**
* Warns the user when their corpus is too small.
*/
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel);
/**
* Checks total compressed size of a dictionary
*/
@ -78,6 +116,32 @@ void COVER_best_start(COVER_best_t *best);
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
ZDICT_cover_params_t parameters, void *dict,
size_t dictSize);
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Checks if the return
* value is an error.
*/
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Returns a struct where
* return.totalCompressedSize is a ZSTD error.
*/
COVER_dictSelection_t COVER_dictSelectionError(size_t error);
/**
* Always call after selectDict is called to free up used memory from
* newly created dictionary.
*/
void COVER_dictSelectionFree(COVER_dictSelection_t selection);
/**
* Called to finalize the dictionary and select one based on whether or not
* the shrink-dict flag was enabled. If enabled the dictionary used is the
* smallest dictionary within a specified regression of the compressed size
* from the largest dictionary.
*/
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize);

View File

@ -132,7 +132,7 @@ typedef struct {
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer with hash value d is in the dictionay we set F(d) = 0.
* Once the dmer with hash value d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
U32 *freqs, U32 begin, U32 end,
@ -161,7 +161,7 @@ static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
/* Get hash value of current dmer */
const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d);
/* Add frequency of this index to score if this is the first occurence of index in active segment */
/* Add frequency of this index to score if this is the first occurrence of index in active segment */
if (segmentFreqs[idx] == 0) {
activeSegment.score += freqs[idx];
}
@ -287,10 +287,10 @@ FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx)
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can used multiple
* times.
* Returns 1 on success or zero on error.
* Returns 0 on success or error code on error.
* The context must be destroyed with `FASTCOVER_ctx_destroy()`.
*/
static int
static size_t
FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
@ -310,19 +310,19 @@ FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
return 0;
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples);
return 0;
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples);
return 0;
return ERROR(srcSize_wrong);
}
/* Zero the context */
@ -347,7 +347,7 @@ FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
if (ctx->offsets == NULL) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n");
FASTCOVER_ctx_destroy(ctx);
return 0;
return ERROR(memory_allocation);
}
/* Fill offsets from the samplesSizes */
@ -364,13 +364,13 @@ FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
if (ctx->freqs == NULL) {
DISPLAYLEVEL(1, "Failed to allocate frequency table \n");
FASTCOVER_ctx_destroy(ctx);
return 0;
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Computing frequencies\n");
FASTCOVER_computeFrequency(ctx->freqs, ctx);
return 1;
return 0;
}
@ -386,29 +386,35 @@ FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
{
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data up into epochs of equal size.
* We will select at least one segment from each epoch.
*/
const unsigned epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k));
const unsigned epochSize = (U32)(ctx->nbDmers / epochs);
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1);
const size_t maxZeroScoreRun = 10;
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
epochs, epochSize);
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
const U32 epochBegin = (U32)(epoch * epochSize);
const U32 epochEnd = epochBegin + epochSize;
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = FASTCOVER_selectSegment(
ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs);
/* If the segment covers no dmers, then we are out of content */
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
break;
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
@ -429,7 +435,6 @@ FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
return tail;
}
/**
* Parameters for FASTCOVER_tryParameters().
*/
@ -458,6 +463,7 @@ static void FASTCOVER_tryParameters(void *opaque)
U16* segmentFreqs = (U16 *)calloc(((U64)1 << ctx->f), sizeof(U16));
/* Allocate space for hash table, dict, and freqs */
BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
U32 *freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
if (!segmentFreqs || !dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
@ -467,27 +473,24 @@ static void FASTCOVER_tryParameters(void *opaque)
memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32));
/* Build the dictionary */
{ const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity,
parameters, segmentFreqs);
parameters, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100);
dictBufferCapacity = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, nbFinalizeSamples, parameters.zParams);
if (ZDICT_isError(dictBufferCapacity)) {
DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
selection = COVER_selectDict(dict + tail, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, nbFinalizeSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
/* Check total compressed size */
totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes,
ctx->samples, ctx->offsets,
ctx->nbTrainSamples, ctx->nbSamples,
dict, dictBufferCapacity);
_cleanup:
COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
dictBufferCapacity);
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
free(segmentFreqs);
free(dict);
COVER_dictSelectionFree(selection);
free(freqs);
}
@ -502,6 +505,7 @@ FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams,
coverParams->nbThreads = fastCoverParams.nbThreads;
coverParams->splitPoint = fastCoverParams.splitPoint;
coverParams->zParams = fastCoverParams.zParams;
coverParams->shrinkDict = fastCoverParams.shrinkDict;
}
@ -518,6 +522,7 @@ FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams,
fastCoverParams->f = f;
fastCoverParams->accel = accel;
fastCoverParams->zParams = coverParams.zParams;
fastCoverParams->shrinkDict = coverParams.shrinkDict;
}
@ -544,11 +549,11 @@ ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f,
parameters.accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n");
return ERROR(GENERIC);
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
@ -558,12 +563,16 @@ ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
/* Assign corresponding FASTCOVER_accel_t to accelParams*/
accelParams = FASTCOVER_defaultAccelParameters[parameters.accel];
/* Initialize context */
if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
coverParams.d, parameters.splitPoint, parameters.f,
accelParams)) {
DISPLAYLEVEL(1, "Failed to initialize context\n");
return ERROR(GENERIC);
accelParams);
if (ZSTD_isError(initVal)) {
DISPLAYLEVEL(1, "Failed to initialize context\n");
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel);
/* Build the dictionary */
DISPLAYLEVEL(2, "Building dictionary\n");
{
@ -609,6 +618,7 @@ ZDICT_optimizeTrainFromBuffer_fastCover(
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f;
const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel;
const unsigned shrinkDict = 0;
/* Local variables */
const int displayLevel = parameters->zParams.notificationLevel;
unsigned iteration = 1;
@ -616,22 +626,23 @@ ZDICT_optimizeTrainFromBuffer_fastCover(
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n");
return ERROR(GENERIC);
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n");
return ERROR(GENERIC);
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n",
@ -658,11 +669,18 @@ ZDICT_optimizeTrainFromBuffer_fastCover(
/* Initialize the context for this value of d */
FASTCOVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return ERROR(GENERIC);
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
@ -675,7 +693,7 @@ ZDICT_optimizeTrainFromBuffer_fastCover(
COVER_best_destroy(&best);
FASTCOVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(GENERIC);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
@ -685,6 +703,7 @@ ZDICT_optimizeTrainFromBuffer_fastCover(
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
data->parameters.zParams.notificationLevel = g_displayLevel;
/* Check the parameters */
if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity,

View File

@ -571,7 +571,7 @@ static void ZDICT_fillNoise(void* buffer, size_t length)
unsigned const prime1 = 2654435761U;
unsigned const prime2 = 2246822519U;
unsigned acc = prime1;
size_t p=0;;
size_t p=0;
for (p=0; p<length; p++) {
acc *= prime2;
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
@ -741,7 +741,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
/* analyze, build stats, starting with literals */
{ size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
if (HUF_isError(maxNbBits)) {
eSize = ERROR(GENERIC);
eSize = maxNbBits;
DISPLAYLEVEL(1, " HUF_buildCTable error \n");
goto _cleanup;
}
@ -764,7 +764,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
goto _cleanup;
}
@ -773,7 +773,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
goto _cleanup;
}
@ -782,7 +782,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
eSize = errorCode;
DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
goto _cleanup;
}
@ -791,7 +791,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
/* write result to buffer */
{ size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
if (HUF_isError(hhSize)) {
eSize = ERROR(GENERIC);
eSize = hhSize;
DISPLAYLEVEL(1, "HUF_writeCTable error \n");
goto _cleanup;
}
@ -802,7 +802,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
{ size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
if (FSE_isError(ohSize)) {
eSize = ERROR(GENERIC);
eSize = ohSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
goto _cleanup;
}
@ -813,7 +813,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
{ size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
if (FSE_isError(mhSize)) {
eSize = ERROR(GENERIC);
eSize = mhSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
goto _cleanup;
}
@ -824,7 +824,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
{ size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
if (FSE_isError(lhSize)) {
eSize = ERROR(GENERIC);
eSize = lhSize;
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
goto _cleanup;
}
@ -834,7 +834,7 @@ static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
}
if (maxDstSize<12) {
eSize = ERROR(GENERIC);
eSize = ERROR(dstSize_tooSmall);
DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
goto _cleanup;
}

View File

@ -46,7 +46,12 @@ extern "C" {
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: ZDICT_trainFromBuffer() requires about 9 bytes of memory for each input byte.
* Note: Dictionary training will fail if there are not enough samples to construct a
* dictionary, or if most of the samples are too small (< 8 bytes being the lower limit).
* If dictionary training fails, you should use zstd without a dictionary, as the dictionary
* would've been ineffective anyways. If you believe your samples would benefit from a dictionary
* please open an issue with details, and we can look into it.
* Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
@ -89,6 +94,8 @@ typedef struct {
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_cover_params_t;
@ -100,6 +107,9 @@ typedef struct {
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_fastCover_params_t;
@ -110,6 +120,7 @@ typedef struct {
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
@ -133,8 +144,9 @@ ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
*/
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
@ -151,7 +163,8 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: ZDICT_trainFromBuffer_fastCover() requires about 1 bytes of memory for each input byte and additionally another 6 * 2^f bytes of memory .
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
@ -175,9 +188,10 @@ ZDICTLIB_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer,
* If accel is zero, default value of 1 is used.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 1 byte of memory for each input byte and additionally another 6 * 2^f bytes of memory for each thread.
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread.
*/
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
size_t dictBufferCapacity, const void* samplesBuffer,
@ -195,7 +209,7 @@ ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
* maxDictSize must be >= dictContentSize, and must be >= ZDICT_DICTSIZE_MIN bytes.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`),
* or an error code, which can be tested by ZDICT_isError().
* or an error code, which can be tested by ZDICT_isError().
* Note: ZDICT_finalizeDictionary() will push notifications into stderr if instructed to, using notificationLevel>0.
* Note 2: dictBuffer and dictContent can overlap
*/
@ -219,6 +233,7 @@ typedef struct {
* `parameters` is optional and can be provided with values set to 0 to mean "default".
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.

View File

@ -20,7 +20,7 @@ extern "C" {
***************************************/
#include "mem.h" /* MEM_STATIC */
#include "error_private.h" /* ERROR */
#include "zstd.h" /* ZSTD_inBuffer, ZSTD_outBuffer */
#include "zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */
#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0)
# undef ZSTD_LEGACY_SUPPORT
@ -178,43 +178,77 @@ MEM_STATIC size_t ZSTD_decompressLegacy(
}
}
MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src,
size_t compressedSize)
MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize)
{
U32 const version = ZSTD_isLegacy(src, compressedSize);
ZSTD_frameSizeInfo frameSizeInfo;
U32 const version = ZSTD_isLegacy(src, srcSize);
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
return ZSTDv01_findFrameCompressedSize(src, compressedSize);
ZSTDv01_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
return ZSTDv02_findFrameCompressedSize(src, compressedSize);
ZSTDv02_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
return ZSTDv03_findFrameCompressedSize(src, compressedSize);
ZSTDv03_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
return ZSTDv04_findFrameCompressedSize(src, compressedSize);
ZSTDv04_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
return ZSTDv05_findFrameCompressedSize(src, compressedSize);
ZSTDv05_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
return ZSTDv06_findFrameCompressedSize(src, compressedSize);
ZSTDv06_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
return ZSTDv07_findFrameCompressedSize(src, compressedSize);
ZSTDv07_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
default :
return ERROR(prefix_unknown);
frameSizeInfo.compressedSize = ERROR(prefix_unknown);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
break;
}
if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) {
frameSizeInfo.compressedSize = ERROR(srcSize_wrong);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
}
return frameSizeInfo;
}
MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize);
return frameSizeInfo.compressedSize;
}
MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)

View File

@ -346,7 +346,7 @@ FORCE_INLINE unsigned FSE_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (GCC_VERSION >= 304) /* GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -1073,99 +1073,102 @@ static size_t HUF_decompress_usingDTable( /* -3% slower when non static */
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-15;
const void* ptr = DTable;
const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1;
const U32 dtLog = DTable[0];
size_t errorCode;
U32 reloadStatus;
/* Init */
const U16* jumpTable = (const U16*)cSrc;
const size_t length1 = FSE_readLE16(jumpTable);
const size_t length2 = FSE_readLE16(jumpTable+1);
const size_t length3 = FSE_readLE16(jumpTable+2);
const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; // check coherency !!
const char* const start1 = (const char*)(cSrc) + 6;
const char* const start2 = start1 + length1;
const char* const start3 = start2 + length2;
const char* const start4 = start3 + length3;
FSE_DStream_t bitD1, bitD2, bitD3, bitD4;
if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
errorCode = FSE_initDStream(&bitD1, start1, length1);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD2, start2, length2);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD3, start3, length3);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD4, start4, length4);
if (FSE_isError(errorCode)) return errorCode;
reloadStatus=FSE_reloadDStream(&bitD2);
/* 16 symbols per loop */
for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit); /* D2-3-4 are supposed to be synchronized and finish together */
op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
if (cSrcSize < 6) return (size_t)-FSE_ERROR_srcSize_wrong;
{
#define HUF_DECODE_SYMBOL_0(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog);
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-15;
#define HUF_DECODE_SYMBOL_1(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)
const void* ptr = DTable;
const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1;
const U32 dtLog = DTable[0];
size_t errorCode;
U32 reloadStatus;
#define HUF_DECODE_SYMBOL_2(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits()) FSE_reloadDStream(&Dstream)
/* Init */
HUF_DECODE_SYMBOL_1( 0, bitD1);
HUF_DECODE_SYMBOL_1( 1, bitD2);
HUF_DECODE_SYMBOL_1( 2, bitD3);
HUF_DECODE_SYMBOL_1( 3, bitD4);
HUF_DECODE_SYMBOL_2( 4, bitD1);
HUF_DECODE_SYMBOL_2( 5, bitD2);
HUF_DECODE_SYMBOL_2( 6, bitD3);
HUF_DECODE_SYMBOL_2( 7, bitD4);
HUF_DECODE_SYMBOL_1( 8, bitD1);
HUF_DECODE_SYMBOL_1( 9, bitD2);
HUF_DECODE_SYMBOL_1(10, bitD3);
HUF_DECODE_SYMBOL_1(11, bitD4);
HUF_DECODE_SYMBOL_0(12, bitD1);
HUF_DECODE_SYMBOL_0(13, bitD2);
HUF_DECODE_SYMBOL_0(14, bitD3);
HUF_DECODE_SYMBOL_0(15, bitD4);
}
const U16* jumpTable = (const U16*)cSrc;
const size_t length1 = FSE_readLE16(jumpTable);
const size_t length2 = FSE_readLE16(jumpTable+1);
const size_t length3 = FSE_readLE16(jumpTable+2);
const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; // check coherency !!
const char* const start1 = (const char*)(cSrc) + 6;
const char* const start2 = start1 + length1;
const char* const start3 = start2 + length2;
const char* const start4 = start3 + length3;
FSE_DStream_t bitD1, bitD2, bitD3, bitD4;
if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be FSE_DStream_unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong;
/* tail */
{
// bitTail = bitD1; // *much* slower : -20% !??!
FSE_DStream_t bitTail;
bitTail.ptr = bitD1.ptr;
bitTail.bitsConsumed = bitD1.bitsConsumed;
bitTail.bitContainer = bitD1.bitContainer; // required in case of FSE_DStream_endOfBuffer
bitTail.start = start1;
for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
errorCode = FSE_initDStream(&bitD1, start1, length1);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD2, start2, length2);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD3, start3, length3);
if (FSE_isError(errorCode)) return errorCode;
errorCode = FSE_initDStream(&bitD4, start4, length4);
if (FSE_isError(errorCode)) return errorCode;
reloadStatus=FSE_reloadDStream(&bitD2);
/* 16 symbols per loop */
for ( ; (reloadStatus<FSE_DStream_completed) && (op<olimit); /* D2-3-4 are supposed to be synchronized and finish together */
op+=16, reloadStatus = FSE_reloadDStream(&bitD2) | FSE_reloadDStream(&bitD3) | FSE_reloadDStream(&bitD4), FSE_reloadDStream(&bitD1))
{
HUF_DECODE_SYMBOL_0(0, bitTail);
#define HUF_DECODE_SYMBOL_0(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog);
#define HUF_DECODE_SYMBOL_1(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits() && (HUF_MAX_TABLELOG>12)) FSE_reloadDStream(&Dstream)
#define HUF_DECODE_SYMBOL_2(n, Dstream) \
op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \
if (FSE_32bits()) FSE_reloadDStream(&Dstream)
HUF_DECODE_SYMBOL_1( 0, bitD1);
HUF_DECODE_SYMBOL_1( 1, bitD2);
HUF_DECODE_SYMBOL_1( 2, bitD3);
HUF_DECODE_SYMBOL_1( 3, bitD4);
HUF_DECODE_SYMBOL_2( 4, bitD1);
HUF_DECODE_SYMBOL_2( 5, bitD2);
HUF_DECODE_SYMBOL_2( 6, bitD3);
HUF_DECODE_SYMBOL_2( 7, bitD4);
HUF_DECODE_SYMBOL_1( 8, bitD1);
HUF_DECODE_SYMBOL_1( 9, bitD2);
HUF_DECODE_SYMBOL_1(10, bitD3);
HUF_DECODE_SYMBOL_1(11, bitD4);
HUF_DECODE_SYMBOL_0(12, bitD1);
HUF_DECODE_SYMBOL_0(13, bitD2);
HUF_DECODE_SYMBOL_0(14, bitD3);
HUF_DECODE_SYMBOL_0(15, bitD4);
}
if (FSE_endOfDStream(&bitTail))
return op-ostart;
if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be FSE_DStream_unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
/* tail */
{
// bitTail = bitD1; // *much* slower : -20% !??!
FSE_DStream_t bitTail;
bitTail.ptr = bitD1.ptr;
bitTail.bitsConsumed = bitD1.bitsConsumed;
bitTail.bitContainer = bitD1.bitContainer; // required in case of FSE_DStream_endOfBuffer
bitTail.start = start1;
for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op<omax) ; op++)
{
HUF_DECODE_SYMBOL_0(0, bitTail);
}
if (FSE_endOfDStream(&bitTail))
return op-ostart;
}
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */
return (size_t)-FSE_ERROR_corruptionDetected;
}
@ -1336,6 +1339,8 @@ static const U32 ZSTD_magicNumber = 0xFD2FB51E; /* 3rd version : seqNb header
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
@ -1353,8 +1358,6 @@ static unsigned ZSTD_isLittleEndian(void)
static U16 ZSTD_read16(const void* p) { U16 r; memcpy(&r, p, sizeof(r)); return r; }
static U32 ZSTD_read32(const void* p) { U32 r; memcpy(&r, p, sizeof(r)); return r; }
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
@ -1379,16 +1382,9 @@ static U16 ZSTD_readLE16(const void* memPtr)
}
}
static U32 ZSTD_readLE32(const void* memPtr)
static U32 ZSTD_readLE24(const void* memPtr)
{
if (ZSTD_isLittleEndian())
return ZSTD_read32(memPtr);
else
{
const BYTE* p = (const BYTE*)memPtr;
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
}
return ZSTD_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
static U32 ZSTD_readBE32(const void* memPtr)
@ -1702,13 +1698,13 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
U32 add = dumps<de ? *dumps++ : 0;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else
{
if (dumps<=(de-3))
{
litLength = ZSTD_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
litLength = ZSTD_readLE24(dumps);
dumps += 3;
}
}
@ -1730,13 +1726,13 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
U32 add = dumps<de ? *dumps++ : 0;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else
{
if (dumps<=(de-3))
{
matchLength = ZSTD_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
matchLength = ZSTD_readLE24(dumps);
dumps += 3;
}
}
@ -1757,7 +1753,7 @@ static size_t ZSTD_execSequence(BYTE* op,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
const size_t litLength = sequence.litLength;
BYTE* const endMatch = op + litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
@ -1999,36 +1995,59 @@ size_t ZSTDv01_decompress(void* dst, size_t maxDstSize, const void* src, size_t
return ZSTDv01_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
size_t ZSTDv01_findFrameCompressedSize(const void* src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = ZSTD_readBE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t blockSize = ZSTDv01_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv01_isError(blockSize)) return blockSize;
if (ZSTDv01_isError(blockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, blockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (blockSize > remainingSize) return ERROR(srcSize_wrong);
if (blockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (blockSize == 0) break; /* bt_end */
ip += blockSize;
remainingSize -= blockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/*******************************

View File

@ -35,13 +35,18 @@ ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format
size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv01_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.1.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv01_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error

View File

@ -217,6 +217,11 @@ MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
@ -348,7 +353,7 @@ MEM_STATIC unsigned BIT_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -2728,6 +2733,8 @@ static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
@ -2882,6 +2889,7 @@ static size_t ZSTD_decodeLiteralsBlock(void* ctx,
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
@ -3041,11 +3049,11 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else
else if (dumps + 3 <= de)
{
litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
@ -3071,11 +3079,11 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else
else if (dumps + 3 <= de)
{
matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
@ -3096,7 +3104,7 @@ static size_t ZSTD_execSequence(BYTE* op,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
BYTE* const oLitEnd = op + sequence.litLength;
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
@ -3312,37 +3320,59 @@ static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, siz
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
static size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/*******************************
@ -3458,11 +3488,6 @@ size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
}
size_t ZSTDv02_findFrameCompressedSize(const void *src, size_t compressedSize)
{
return ZSTD_findFrameCompressedSize(src, compressedSize);
}
ZSTDv02_Dctx* ZSTDv02_createDCtx(void)
{
return (ZSTDv02_Dctx*)ZSTD_createDCtx();

View File

@ -35,13 +35,18 @@ ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv02_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.2.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv02_isError())
*/
size_t ZSTDv02_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv02_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.2.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error

View File

@ -219,6 +219,11 @@ MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
@ -351,7 +356,7 @@ MEM_STATIC unsigned BIT_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -2369,6 +2374,8 @@ static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_
#define LITERAL_NOENTROPY 63
#define COMMAND_NOENTROPY 7 /* to remove */
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const size_t ZSTD_blockHeaderSize = 3;
static const size_t ZSTD_frameHeaderSize = 4;
@ -2523,6 +2530,7 @@ static size_t ZSTD_decodeLiteralsBlock(void* ctx,
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
@ -2682,11 +2690,11 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
seqState->prevOffset = seq->offset;
if (litLength == MaxLL)
{
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else
else if (dumps + 3 <= de)
{
litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
@ -2712,11 +2720,11 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML)
{
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else
else if (dumps + 3 <= de)
{
matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
@ -2737,7 +2745,7 @@ static size_t ZSTD_execSequence(BYTE* op,
BYTE* const base, BYTE* const oend)
{
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */
const BYTE* const ostart = op;
BYTE* const oLitEnd = op + sequence.litLength;
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
@ -2953,36 +2961,59 @@ static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, siz
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
}
static size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
MEM_STATIC void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
U32 magicNumber;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
magicNumber = MEM_readLE32(src);
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
if (magicNumber != ZSTD_magicNumber) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
@ -3099,11 +3130,6 @@ size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
}
size_t ZSTDv03_findFrameCompressedSize(const void* src, size_t srcSize)
{
return ZSTD_findFrameCompressedSize(src, srcSize);
}
ZSTDv03_Dctx* ZSTDv03_createDCtx(void)
{
return (ZSTDv03_Dctx*)ZSTD_createDCtx();

View File

@ -35,13 +35,18 @@ ZSTDv03_decompress() : decompress ZSTD frames compliant with v0.3.x format
size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv03_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.3.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv03_isError())
*/
size_t ZSTDv03_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv03_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.3.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv03_isError() : tells if the result of ZSTDv03_decompress() is an error

View File

@ -189,6 +189,11 @@ MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
@ -373,6 +378,8 @@ static const size_t ZSTD_frameHeaderSize_min = 5;
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
@ -620,7 +627,7 @@ MEM_STATIC unsigned BIT_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -2648,6 +2655,7 @@ static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
{
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
if (litSize > srcSize-3) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart, litSize);
dctx->litPtr = dctx->litBuffer;
@ -2806,13 +2814,12 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
if (litLength == MaxLL) {
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) litLength += add;
else {
litLength = dumps[0] + (dumps[1]<<8) + (dumps[2]<<16);
else if (dumps + 3 <= de) {
litLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps > de) { litLength = MaxLL+255; } /* late correction, to avoid using uninitialized memory */
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
@ -2835,13 +2842,12 @@ static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
/* MatchLength */
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML) {
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else {
matchLength = dumps[0] + (dumps[1]<<8) + (dumps[2]<<16);
else if (dumps + 3 <= de){
matchLength = MEM_readLE24(dumps);
dumps += 3;
}
if (dumps > de) { matchLength = MaxML+255; } /* late correction, to avoid using uninitialized memory */
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
@ -2860,7 +2866,7 @@ static size_t ZSTD_execSequence(BYTE* op,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
BYTE* const oLitEnd = op + sequence.litLength;
const size_t sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
@ -3029,9 +3035,12 @@ static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
{
/* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
size_t litCSize;
if (srcSize > BLOCKSIZE) return ERROR(corruption_detected);
/* Decode literals sub-block */
size_t litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
@ -3119,34 +3128,57 @@ static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
return op-ostart;
}
static size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
if (srcSize < ZSTD_frameHeaderSize_min) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
if (ZSTD_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/* ******************************
@ -3578,11 +3610,6 @@ size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t
#endif
}
size_t ZSTDv04_findFrameCompressedSize(const void* src, size_t srcSize)
{
return ZSTD_findFrameCompressedSize(src, srcSize);
}
size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); }
size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx)

View File

@ -35,13 +35,18 @@ ZSTDv04_decompress() : decompress ZSTD frames compliant with v0.4.x format
size_t ZSTDv04_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv04_getFrameSrcSize() : get the source length of a ZSTD frame compliant with v0.4.x format
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv04_isError())
*/
size_t ZSTDv04_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv04_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.4.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv04_isError() : tells if the result of ZSTDv04_decompress() is an error

View File

@ -491,6 +491,8 @@ static const size_t ZSTDv05_frameHeaderSize_min = 5;
#define WILDCOPY_OVERLENGTH 8
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
@ -754,7 +756,7 @@ MEM_STATIC unsigned BITv05_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -1996,91 +1998,92 @@ size_t HUFv05_decompress4X2_usingDTable(
const void* cSrc, size_t cSrcSize,
const U16* DTable)
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
/* Init */
BITv05_DStream_t bitD1;
BITv05_DStream_t bitD2;
BITv05_DStream_t bitD3;
BITv05_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{
const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable;
const HUFv05_DEltX2* const dt = ((const HUFv05_DEltX2*)dtPtr) +1;
const U32 dtLog = DTable[0];
size_t errorCode;
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv05_initDStream(&bitD1, istart1, length1);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD2, istart2, length2);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD3, istart3, length3);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD4, istart4, length4);
if (HUFv05_isError(errorCode)) return errorCode;
/* Init */
BITv05_DStream_t bitD1;
BITv05_DStream_t bitD2;
BITv05_DStream_t bitD3;
BITv05_DStream_t bitD4;
const size_t length1 = MEM_readLE16(istart);
const size_t length2 = MEM_readLE16(istart+2);
const size_t length3 = MEM_readLE16(istart+4);
size_t length4;
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_1(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_1(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_1(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_1(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_0(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_0(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_0(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_0(op4, &bitD4);
length4 = cSrcSize - (length1 + length2 + length3 + 6);
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
errorCode = BITv05_initDStream(&bitD1, istart1, length1);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD2, istart2, length2);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD3, istart3, length3);
if (HUFv05_isError(errorCode)) return errorCode;
errorCode = BITv05_initDStream(&bitD4, istart4, length4);
if (HUFv05_isError(errorCode)) return errorCode;
/* 16-32 symbols per loop (4-8 symbols per stream) */
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
for ( ; (endSignal==BITv05_DStream_unfinished) && (op4<(oend-7)) ; ) {
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_1(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_1(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_1(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_1(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_2(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_2(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_2(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_2(op4, &bitD4);
HUFv05_DECODE_SYMBOLX2_0(op1, &bitD1);
HUFv05_DECODE_SYMBOLX2_0(op2, &bitD2);
HUFv05_DECODE_SYMBOLX2_0(op3, &bitD3);
HUFv05_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = BITv05_reloadDStream(&bitD1) | BITv05_reloadDStream(&bitD2) | BITv05_reloadDStream(&bitD3) | BITv05_reloadDStream(&bitD4);
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv05_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUFv05_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUFv05_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUFv05_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUFv05_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUFv05_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUFv05_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUFv05_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
endSignal = BITv05_endOfDStream(&bitD1) & BITv05_endOfDStream(&bitD2) & BITv05_endOfDStream(&bitD3) & BITv05_endOfDStream(&bitD4);
if (!endSignal) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
@ -3148,14 +3151,17 @@ static void ZSTDv05_decodeSequence(seq_t* seq, seqState_t* seqState)
litLength = FSEv05_peakSymbol(&(seqState->stateLL));
prevOffset = litLength ? seq->offset : seqState->prevOffset;
if (litLength == MaxLL) {
U32 add = *dumps++;
const U32 add = *dumps++;
if (add < 255) litLength += add;
else {
litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no risk : dumps is always followed by seq tables > 1 byte */
if (litLength&1) litLength>>=1, dumps += 3;
else litLength = (U16)(litLength)>>1, dumps += 2;
else if (dumps + 2 <= de) {
litLength = MEM_readLE16(dumps);
dumps += 2;
if ((litLength & 1) && dumps < de) {
litLength += *dumps << 16;
dumps += 1;
}
litLength>>=1;
}
if (dumps > de) { litLength = MaxLL+255; } /* late correction, to avoid using uninitialized memory */
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
@ -3182,14 +3188,17 @@ static void ZSTDv05_decodeSequence(seq_t* seq, seqState_t* seqState)
/* MatchLength */
matchLength = FSEv05_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
if (matchLength == MaxML) {
U32 add = *dumps++;
const U32 add = dumps<de ? *dumps++ : 0;
if (add < 255) matchLength += add;
else {
matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
if (matchLength&1) matchLength>>=1, dumps += 3;
else matchLength = (U16)(matchLength)>>1, dumps += 2;
else if (dumps + 2 <= de) {
matchLength = MEM_readLE16(dumps);
dumps += 2;
if ((matchLength & 1) && dumps < de) {
matchLength += *dumps << 16;
dumps += 1;
}
matchLength >>= 1;
}
if (dumps > de) { matchLength = MaxML+255; } /* late correction, to avoid using uninitialized memory */
if (dumps >= de) { dumps = de-1; } /* late correction, to avoid read overflow (data is now corrupted anyway) */
}
matchLength += MINMATCH;
@ -3217,7 +3226,7 @@ static size_t ZSTDv05_execSequence(BYTE* op,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
BYTE* const oLitEnd = op + sequence.litLength;
const size_t sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
@ -3508,34 +3517,57 @@ size_t ZSTDv05_decompress(void* dst, size_t maxDstSize, const void* src, size_t
#endif
}
size_t ZSTDv05_findFrameCompressedSize(const void *src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties;
/* Frame Header */
if (srcSize < ZSTDv05_frameHeaderSize_min) return ERROR(srcSize_wrong);
if (MEM_readLE32(src) != ZSTDv05_MAGICNUMBER) return ERROR(prefix_unknown);
if (srcSize < ZSTDv05_frameHeaderSize_min) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (MEM_readLE32(src) != ZSTDv05_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
ip += ZSTDv05_frameHeaderSize_min; remainingSize -= ZSTDv05_frameHeaderSize_min;
/* Loop on each block */
while (1)
{
size_t cBlockSize = ZSTDv05_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv05_isError(cBlockSize)) return cBlockSize;
if (ZSTDv05_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv05_blockHeaderSize;
remainingSize -= ZSTDv05_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * BLOCKSIZE;
}
/* ******************************

View File

@ -33,13 +33,18 @@ extern "C" {
size_t ZSTDv05_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv05_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv05_isError())
*/
size_t ZSTDv05_findFrameCompressedSize(const void* src, size_t compressedSize);
/**
ZSTDv05_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.5.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/* *************************************
* Helper functions

View File

@ -506,6 +506,8 @@ typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
#define FSEv06_ENCODING_STATIC 2
#define FSEv06_ENCODING_DYNAMIC 3
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
@ -858,7 +860,7 @@ MEM_STATIC unsigned BITv06_highbit32 ( U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -3240,14 +3242,12 @@ static size_t ZSTDv06_decodeSeqHeaders(int* nbSeqPtr,
}
/* FSE table descriptors */
if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
{ U32 const LLtype = *ip >> 6;
U32 const Offtype = (*ip >> 4) & 3;
U32 const MLtype = (*ip >> 2) & 3;
ip++;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* Build DTables */
{ size_t const bhSize = ZSTDv06_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
if (ZSTDv06_isError(bhSize)) return ERROR(corruption_detected);
@ -3406,7 +3406,7 @@ static size_t ZSTDv06_execSequence(BYTE* op,
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
@ -3654,36 +3654,62 @@ size_t ZSTDv06_decompress(void* dst, size_t dstCapacity, const void* src, size_t
#endif
}
size_t ZSTDv06_findFrameCompressedSize(const void* src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
blockProperties_t blockProperties = { bt_compressed, 0 };
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, ZSTDv06_frameHeaderSize_min);
if (ZSTDv06_isError(frameHeaderSize)) return frameHeaderSize;
if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) return ERROR(prefix_unknown);
if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) return ERROR(srcSize_wrong);
{ size_t const frameHeaderSize = ZSTDv06_frameHeaderSize(src, srcSize);
if (ZSTDv06_isError(frameHeaderSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
return;
}
if (MEM_readLE32(src) != ZSTDv06_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
if (srcSize < frameHeaderSize+ZSTDv06_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t const cBlockSize = ZSTDv06_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv06_isError(cBlockSize)) return cBlockSize;
if (ZSTDv06_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv06_blockHeaderSize;
remainingSize -= ZSTDv06_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
if (cBlockSize == 0) break; /* bt_end */
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * ZSTDv06_BLOCKSIZE_MAX;
}
/*_******************************

View File

@ -43,12 +43,17 @@ ZSTDLIBv06_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv06_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv06_isError())
ZSTDv06_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.6.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
size_t ZSTDv06_findFrameCompressedSize(const void* src, size_t compressedSize);
void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/* *************************************
* Helper functions

View File

@ -530,7 +530,7 @@ MEM_STATIC unsigned BITv07_highbit32 (U32 val)
_BitScanReverse ( &r, val );
return (unsigned) r;
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
return 31 - __builtin_clz (val);
return __builtin_clz (val) ^ 31;
# else /* Software version */
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
U32 v = val;
@ -2740,6 +2740,8 @@ typedef enum { lbt_huffman, lbt_repeat, lbt_raw, lbt_rle } litBlockType_t;
#define FSEv07_ENCODING_STATIC 2
#define FSEv07_ENCODING_DYNAMIC 3
#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
13,14,15,16 };
@ -3468,14 +3470,12 @@ static size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr,
}
/* FSE table descriptors */
if (ip + 4 > iend) return ERROR(srcSize_wrong); /* min : header byte + all 3 are "raw", hence no header, but at least xxLog bits per type */
{ U32 const LLtype = *ip >> 6;
U32 const OFtype = (*ip >> 4) & 3;
U32 const MLtype = (*ip >> 2) & 3;
ip++;
/* check */
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
/* Build DTables */
{ size_t const llhSize = ZSTDv07_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable);
if (ZSTDv07_isError(llhSize)) return ERROR(corruption_detected);
@ -3631,7 +3631,7 @@ size_t ZSTDv07_execSequence(BYTE* op,
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
@ -3895,19 +3895,40 @@ size_t ZSTDv07_decompress(void* dst, size_t dstCapacity, const void* src, size_t
#endif
}
size_t ZSTDv07_findFrameCompressedSize(const void* src, size_t srcSize)
/* ZSTD_errorFrameSizeInfoLegacy() :
assumes `cSize` and `dBound` are _not_ NULL */
static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
{
*cSize = ret;
*dBound = ZSTD_CONTENTSIZE_ERROR;
}
void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
{
const BYTE* ip = (const BYTE*)src;
size_t remainingSize = srcSize;
size_t nbBlocks = 0;
/* check */
if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
/* Frame Header */
{ size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min);
if (ZSTDv07_isError(frameHeaderSize)) return frameHeaderSize;
if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) return ERROR(prefix_unknown);
if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong);
{ size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, srcSize);
if (ZSTDv07_isError(frameHeaderSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, frameHeaderSize);
return;
}
if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
return;
}
if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
@ -3915,20 +3936,28 @@ size_t ZSTDv07_findFrameCompressedSize(const void* src, size_t srcSize)
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTDv07_isError(cBlockSize)) return cBlockSize;
if (ZSTDv07_isError(cBlockSize)) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
return;
}
ip += ZSTDv07_blockHeaderSize;
remainingSize -= ZSTDv07_blockHeaderSize;
if (blockProperties.blockType == bt_end) break;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
if (cBlockSize > remainingSize) {
ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
return;
}
ip += cBlockSize;
remainingSize -= cBlockSize;
nbBlocks++;
}
return ip - (const BYTE*)src;
*cSize = ip - (const BYTE*)src;
*dBound = nbBlocks * ZSTDv07_BLOCKSIZE_ABSOLUTEMAX;
}
/*_******************************

View File

@ -50,12 +50,17 @@ ZSTDLIBv07_API size_t ZSTDv07_decompress( void* dst, size_t dstCapacity,
const void* src, size_t compressedSize);
/**
ZSTDv07_getFrameSrcSize() : get the source length of a ZSTD frame
compressedSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
return : the number of bytes that would be read to decompress this frame
or an errorCode if it fails (which can be tested using ZSTDv07_isError())
ZSTDv07_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.7.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
size_t ZSTDv07_findFrameCompressedSize(const void* src, size_t compressedSize);
void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/*====== Helper functions ======*/
ZSTDLIBv07_API unsigned ZSTDv07_isError(size_t code); /*!< tells if a `size_t` function result is an error code */

File diff suppressed because it is too large Load Diff