mylar/lib/cherrypy/__init__.py

621 lines
21 KiB
Python
Raw Normal View History

"""CherryPy is a pythonic, object-oriented HTTP framework.
CherryPy consists of not one, but four separate API layers.
The APPLICATION LAYER is the simplest. CherryPy applications are written as
a tree of classes and methods, where each branch in the tree corresponds to
a branch in the URL path. Each method is a 'page handler', which receives
GET and POST params as keyword arguments, and returns or yields the (HTML)
body of the response. The special method name 'index' is used for paths
that end in a slash, and the special method name 'default' is used to
handle multiple paths via a single handler. This layer also includes:
* the 'exposed' attribute (and cherrypy.expose)
* cherrypy.quickstart()
* _cp_config attributes
* cherrypy.tools (including cherrypy.session)
* cherrypy.url()
The ENVIRONMENT LAYER is used by developers at all levels. It provides
information about the current request and response, plus the application
and server environment, via a (default) set of top-level objects:
* cherrypy.request
* cherrypy.response
* cherrypy.engine
* cherrypy.server
* cherrypy.tree
* cherrypy.config
* cherrypy.thread_data
* cherrypy.log
* cherrypy.HTTPError, NotFound, and HTTPRedirect
* cherrypy.lib
The EXTENSION LAYER allows advanced users to construct and share their own
plugins. It consists of:
* Hook API
* Tool API
* Toolbox API
* Dispatch API
* Config Namespace API
Finally, there is the CORE LAYER, which uses the core API's to construct
the default components which are available at higher layers. You can think
of the default components as the 'reference implementation' for CherryPy.
Megaframeworks (and advanced users) may replace the default components
with customized or extended components. The core API's are:
* Application API
* Engine API
* Request API
* Server API
* WSGI API
These API's are described in the CherryPy specification:
http://www.cherrypy.org/wiki/CherryPySpec
"""
__version__ = "3.2.0"
from cherrypy._cpcompat import urljoin as _urljoin, urlencode as _urlencode
from cherrypy._cpcompat import basestring, unicodestr
from cherrypy._cperror import HTTPError, HTTPRedirect, InternalRedirect
from cherrypy._cperror import NotFound, CherryPyException, TimeoutError
from cherrypy import _cpdispatch as dispatch
from cherrypy import _cptools
tools = _cptools.default_toolbox
Tool = _cptools.Tool
from cherrypy import _cprequest
from cherrypy.lib import httputil as _httputil
from cherrypy import _cptree
tree = _cptree.Tree()
from cherrypy._cptree import Application
from cherrypy import _cpwsgi as wsgi
from cherrypy import process
try:
from cherrypy.process import win32
engine = win32.Win32Bus()
engine.console_control_handler = win32.ConsoleCtrlHandler(engine)
del win32
except ImportError:
engine = process.bus
# Timeout monitor
class _TimeoutMonitor(process.plugins.Monitor):
def __init__(self, bus):
self.servings = []
process.plugins.Monitor.__init__(self, bus, self.run)
def acquire(self):
self.servings.append((serving.request, serving.response))
def release(self):
try:
self.servings.remove((serving.request, serving.response))
except ValueError:
pass
def run(self):
"""Check timeout on all responses. (Internal)"""
for req, resp in self.servings:
resp.check_timeout()
engine.timeout_monitor = _TimeoutMonitor(engine)
engine.timeout_monitor.subscribe()
engine.autoreload = process.plugins.Autoreloader(engine)
engine.autoreload.subscribe()
engine.thread_manager = process.plugins.ThreadManager(engine)
engine.thread_manager.subscribe()
engine.signal_handler = process.plugins.SignalHandler(engine)
from cherrypy import _cpserver
server = _cpserver.Server()
server.subscribe()
def quickstart(root=None, script_name="", config=None):
"""Mount the given root, start the builtin server (and engine), then block.
root: an instance of a "controller class" (a collection of page handler
methods) which represents the root of the application.
script_name: a string containing the "mount point" of the application.
This should start with a slash, and be the path portion of the URL
at which to mount the given root. For example, if root.index() will
handle requests to "http://www.example.com:8080/dept/app1/", then
the script_name argument would be "/dept/app1".
It MUST NOT end in a slash. If the script_name refers to the root
of the URI, it MUST be an empty string (not "/").
config: a file or dict containing application config. If this contains
a [global] section, those entries will be used in the global
(site-wide) config.
"""
if config:
_global_conf_alias.update(config)
tree.mount(root, script_name, config)
if hasattr(engine, "signal_handler"):
engine.signal_handler.subscribe()
if hasattr(engine, "console_control_handler"):
engine.console_control_handler.subscribe()
engine.start()
engine.block()
from cherrypy._cpcompat import threadlocal as _local
class _Serving(_local):
"""An interface for registering request and response objects.
Rather than have a separate "thread local" object for the request and
the response, this class works as a single threadlocal container for
both objects (and any others which developers wish to define). In this
way, we can easily dump those objects when we stop/start a new HTTP
conversation, yet still refer to them as module-level globals in a
thread-safe way.
"""
request = _cprequest.Request(_httputil.Host("127.0.0.1", 80),
_httputil.Host("127.0.0.1", 1111))
"""
The request object for the current thread. In the main thread,
and any threads which are not receiving HTTP requests, this is None."""
response = _cprequest.Response()
"""
The response object for the current thread. In the main thread,
and any threads which are not receiving HTTP requests, this is None."""
def load(self, request, response):
self.request = request
self.response = response
def clear(self):
"""Remove all attributes of self."""
self.__dict__.clear()
serving = _Serving()
class _ThreadLocalProxy(object):
__slots__ = ['__attrname__', '__dict__']
def __init__(self, attrname):
self.__attrname__ = attrname
def __getattr__(self, name):
child = getattr(serving, self.__attrname__)
return getattr(child, name)
def __setattr__(self, name, value):
if name in ("__attrname__", ):
object.__setattr__(self, name, value)
else:
child = getattr(serving, self.__attrname__)
setattr(child, name, value)
def __delattr__(self, name):
child = getattr(serving, self.__attrname__)
delattr(child, name)
def _get_dict(self):
child = getattr(serving, self.__attrname__)
d = child.__class__.__dict__.copy()
d.update(child.__dict__)
return d
__dict__ = property(_get_dict)
def __getitem__(self, key):
child = getattr(serving, self.__attrname__)
return child[key]
def __setitem__(self, key, value):
child = getattr(serving, self.__attrname__)
child[key] = value
def __delitem__(self, key):
child = getattr(serving, self.__attrname__)
del child[key]
def __contains__(self, key):
child = getattr(serving, self.__attrname__)
return key in child
def __len__(self):
child = getattr(serving, self.__attrname__)
return len(child)
def __nonzero__(self):
child = getattr(serving, self.__attrname__)
return bool(child)
# Python 3
__bool__ = __nonzero__
# Create request and response object (the same objects will be used
# throughout the entire life of the webserver, but will redirect
# to the "serving" object)
request = _ThreadLocalProxy('request')
response = _ThreadLocalProxy('response')
# Create thread_data object as a thread-specific all-purpose storage
class _ThreadData(_local):
"""A container for thread-specific data."""
thread_data = _ThreadData()
# Monkeypatch pydoc to allow help() to go through the threadlocal proxy.
# Jan 2007: no Googleable examples of anyone else replacing pydoc.resolve.
# The only other way would be to change what is returned from type(request)
# and that's not possible in pure Python (you'd have to fake ob_type).
def _cherrypy_pydoc_resolve(thing, forceload=0):
"""Given an object or a path to an object, get the object and its name."""
if isinstance(thing, _ThreadLocalProxy):
thing = getattr(serving, thing.__attrname__)
return _pydoc._builtin_resolve(thing, forceload)
try:
import pydoc as _pydoc
_pydoc._builtin_resolve = _pydoc.resolve
_pydoc.resolve = _cherrypy_pydoc_resolve
except ImportError:
pass
from cherrypy import _cplogging
class _GlobalLogManager(_cplogging.LogManager):
"""A site-wide LogManager; routes to app.log or global log as appropriate.
This :class:`LogManager<cherrypy._cplogging.LogManager>` implements
cherrypy.log() and cherrypy.log.access(). If either
function is called during a request, the message will be sent to the
logger for the current Application. If they are called outside of a
request, the message will be sent to the site-wide logger.
"""
def __call__(self, *args, **kwargs):
"""Log the given message to the app.log or global log as appropriate."""
# Do NOT use try/except here. See http://www.cherrypy.org/ticket/945
if hasattr(request, 'app') and hasattr(request.app, 'log'):
log = request.app.log
else:
log = self
return log.error(*args, **kwargs)
def access(self):
"""Log an access message to the app.log or global log as appropriate."""
try:
return request.app.log.access()
except AttributeError:
return _cplogging.LogManager.access(self)
log = _GlobalLogManager()
# Set a default screen handler on the global log.
log.screen = True
log.error_file = ''
# Using an access file makes CP about 10% slower. Leave off by default.
log.access_file = ''
def _buslog(msg, level):
log.error(msg, 'ENGINE', severity=level)
engine.subscribe('log', _buslog)
# Helper functions for CP apps #
def expose(func=None, alias=None):
"""Expose the function, optionally providing an alias or set of aliases."""
def expose_(func):
func.exposed = True
if alias is not None:
if isinstance(alias, basestring):
parents[alias.replace(".", "_")] = func
else:
for a in alias:
parents[a.replace(".", "_")] = func
return func
import sys, types
if isinstance(func, (types.FunctionType, types.MethodType)):
if alias is None:
# @expose
func.exposed = True
return func
else:
# func = expose(func, alias)
parents = sys._getframe(1).f_locals
return expose_(func)
elif func is None:
if alias is None:
# @expose()
parents = sys._getframe(1).f_locals
return expose_
else:
# @expose(alias="alias") or
# @expose(alias=["alias1", "alias2"])
parents = sys._getframe(1).f_locals
return expose_
else:
# @expose("alias") or
# @expose(["alias1", "alias2"])
parents = sys._getframe(1).f_locals
alias = func
return expose_
def popargs(*args, **kwargs):
"""A decorator for _cp_dispatch
(cherrypy.dispatch.Dispatcher.dispatch_method_name).
Optional keyword argument: handler=(Object or Function)
Provides a _cp_dispatch function that pops off path segments into
cherrypy.request.params under the names specified. The dispatch
is then forwarded on to the next vpath element.
Note that any existing (and exposed) member function of the class that
popargs is applied to will override that value of the argument. For
instance, if you have a method named "list" on the class decorated with
popargs, then accessing "/list" will call that function instead of popping
it off as the requested parameter. This restriction applies to all
_cp_dispatch functions. The only way around this restriction is to create
a "blank class" whose only function is to provide _cp_dispatch.
If there are path elements after the arguments, or more arguments
are requested than are available in the vpath, then the 'handler'
keyword argument specifies the next object to handle the parameterized
request. If handler is not specified or is None, then self is used.
If handler is a function rather than an instance, then that function
will be called with the args specified and the return value from that
function used as the next object INSTEAD of adding the parameters to
cherrypy.request.args.
This decorator may be used in one of two ways:
As a class decorator:
@cherrypy.popargs('year', 'month', 'day')
class Blog:
def index(self, year=None, month=None, day=None):
#Process the parameters here; any url like
#/, /2009, /2009/12, or /2009/12/31
#will fill in the appropriate parameters.
def create(self):
#This link will still be available at /create. Defined functions
#take precedence over arguments.
Or as a member of a class:
class Blog:
_cp_dispatch = cherrypy.popargs('year', 'month', 'day')
#...
The handler argument may be used to mix arguments with built in functions.
For instance, the following setup allows different activities at the
day, month, and year level:
class DayHandler:
def index(self, year, month, day):
#Do something with this day; probably list entries
def delete(self, year, month, day):
#Delete all entries for this day
@cherrypy.popargs('day', handler=DayHandler())
class MonthHandler:
def index(self, year, month):
#Do something with this month; probably list entries
def delete(self, year, month):
#Delete all entries for this month
@cherrypy.popargs('month', handler=MonthHandler())
class YearHandler:
def index(self, year):
#Do something with this year
#...
@cherrypy.popargs('year', handler=YearHandler())
class Root:
def index(self):
#...
"""
#Since keyword arg comes after *args, we have to process it ourselves
#for lower versions of python.
handler = None
handler_call = False
for k,v in kwargs.items():
if k == 'handler':
handler = v
else:
raise TypeError(
"cherrypy.popargs() got an unexpected keyword argument '{0}'" \
.format(k)
)
import inspect
if handler is not None \
and (hasattr(handler, '__call__') or inspect.isclass(handler)):
handler_call = True
def decorated(cls_or_self=None, vpath=None):
if inspect.isclass(cls_or_self):
#cherrypy.popargs is a class decorator
cls = cls_or_self
setattr(cls, dispatch.Dispatcher.dispatch_method_name, decorated)
return cls
#We're in the actual function
self = cls_or_self
parms = {}
for arg in args:
if not vpath:
break
parms[arg] = vpath.pop(0)
if handler is not None:
if handler_call:
return handler(**parms)
else:
request.params.update(parms)
return handler
request.params.update(parms)
#If we are the ultimate handler, then to prevent our _cp_dispatch
#from being called again, we will resolve remaining elements through
#getattr() directly.
if vpath:
return getattr(self, vpath.pop(0), None)
else:
return self
return decorated
def url(path="", qs="", script_name=None, base=None, relative=None):
"""Create an absolute URL for the given path.
If 'path' starts with a slash ('/'), this will return
(base + script_name + path + qs).
If it does not start with a slash, this returns
(base + script_name [+ request.path_info] + path + qs).
If script_name is None, cherrypy.request will be used
to find a script_name, if available.
If base is None, cherrypy.request.base will be used (if available).
Note that you can use cherrypy.tools.proxy to change this.
Finally, note that this function can be used to obtain an absolute URL
for the current request path (minus the querystring) by passing no args.
If you call url(qs=cherrypy.request.query_string), you should get the
original browser URL (assuming no internal redirections).
If relative is None or not provided, request.app.relative_urls will
be used (if available, else False). If False, the output will be an
absolute URL (including the scheme, host, vhost, and script_name).
If True, the output will instead be a URL that is relative to the
current request path, perhaps including '..' atoms. If relative is
the string 'server', the output will instead be a URL that is
relative to the server root; i.e., it will start with a slash.
"""
if isinstance(qs, (tuple, list, dict)):
qs = _urlencode(qs)
if qs:
qs = '?' + qs
if request.app:
if not path.startswith("/"):
# Append/remove trailing slash from path_info as needed
# (this is to support mistyped URL's without redirecting;
# if you want to redirect, use tools.trailing_slash).
pi = request.path_info
if request.is_index is True:
if not pi.endswith('/'):
pi = pi + '/'
elif request.is_index is False:
if pi.endswith('/') and pi != '/':
pi = pi[:-1]
if path == "":
path = pi
else:
path = _urljoin(pi, path)
if script_name is None:
script_name = request.script_name
if base is None:
base = request.base
newurl = base + script_name + path + qs
else:
# No request.app (we're being called outside a request).
# We'll have to guess the base from server.* attributes.
# This will produce very different results from the above
# if you're using vhosts or tools.proxy.
if base is None:
base = server.base()
path = (script_name or "") + path
newurl = base + path + qs
if './' in newurl:
# Normalize the URL by removing ./ and ../
atoms = []
for atom in newurl.split('/'):
if atom == '.':
pass
elif atom == '..':
atoms.pop()
else:
atoms.append(atom)
newurl = '/'.join(atoms)
# At this point, we should have a fully-qualified absolute URL.
if relative is None:
relative = getattr(request.app, "relative_urls", False)
# See http://www.ietf.org/rfc/rfc2396.txt
if relative == 'server':
# "A relative reference beginning with a single slash character is
# termed an absolute-path reference, as defined by <abs_path>..."
# This is also sometimes called "server-relative".
newurl = '/' + '/'.join(newurl.split('/', 3)[3:])
elif relative:
# "A relative reference that does not begin with a scheme name
# or a slash character is termed a relative-path reference."
old = url().split('/')[:-1]
new = newurl.split('/')
while old and new:
a, b = old[0], new[0]
if a != b:
break
old.pop(0)
new.pop(0)
new = (['..'] * len(old)) + new
newurl = '/'.join(new)
return newurl
# import _cpconfig last so it can reference other top-level objects
from cherrypy import _cpconfig
# Use _global_conf_alias so quickstart can use 'config' as an arg
# without shadowing cherrypy.config.
config = _global_conf_alias = _cpconfig.Config()
config.defaults = {
'tools.log_tracebacks.on': True,
'tools.log_headers.on': True,
'tools.trailing_slash.on': True,
'tools.encode.on': True
}
config.namespaces["log"] = lambda k, v: setattr(log, k, v)
config.namespaces["checker"] = lambda k, v: setattr(checker, k, v)
# Must reset to get our defaults applied.
config.reset()
from cherrypy import _cpchecker
checker = _cpchecker.Checker()
engine.subscribe('start', checker)