restic/vendor/github.com/google/go-cmp/cmp/compare.go

530 lines
17 KiB
Go
Raw Normal View History

2017-12-23 12:02:03 +00:00
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
//
// The primary features of cmp are:
//
// • When the default behavior of equality does not suit the needs of the test,
// custom equality functions can override the equality operation.
// For example, an equality function may report floats as equal so long as they
// are within some tolerance of each other.
//
// • Types that have an Equal method may use that method to determine equality.
// This allows package authors to determine the equality operation for the types
// that they define.
//
// • If no custom equality functions are used and no Equal method is defined,
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explictly compared
// using the AllowUnexported option.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value"
)
// BUG: Maps with keys containing NaN values cannot be properly compared due to
// the reflection package's inability to retrieve such entries. Equal will panic
// anytime it comes across a NaN key, but this behavior may change.
//
// See https://golang.org/issue/11104 for more details.
var nothing = reflect.Value{}
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • If two values are not of the same type, then they are never equal
// and the overall result is false.
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
// If the number of Transformer and Comparer options in S is greater than one,
// then Equal panics because it is ambiguous which option to use.
// If S contains a single Transformer, then use that to transform the current
// values and recursively call Equal on the output values.
// If S contains a single Comparer, then use that to compare the current values.
// Otherwise, evaluation proceeds to the next rule.
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y). Otherwise, no such method exists and evaluation proceeds to
// the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
// Pointers are equal if the underlying values they point to are also equal.
// Interfaces are equal if their underlying concrete values are also equal.
//
// Structs are equal if all of their fields are equal. If a struct contains
// unexported fields, Equal panics unless the AllowUnexported option is used or
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
//
// Arrays, slices, and maps are equal if they are both nil or both non-nil
// with the same length and the elements at each index or key are equal.
// Note that a non-nil empty slice and a nil slice are not equal.
// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
func Equal(x, y interface{}, opts ...Option) bool {
s := newState(opts)
s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
return s.result.Equal()
}
// Diff returns a human-readable report of the differences between two values.
// It returns an empty string if and only if Equal returns true for the same
// input values and options. The output string will use the "-" symbol to
// indicate elements removed from x, and the "+" symbol to indicate elements
// added to y.
//
// Do not depend on this output being stable.
func Diff(x, y interface{}, opts ...Option) string {
r := new(defaultReporter)
opts = Options{Options(opts), r}
eq := Equal(x, y, opts...)
d := r.String()
if (d == "") != eq {
panic("inconsistent difference and equality results")
}
return d
}
type state struct {
// These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
reporter reporter // Optional reporter used for difference formatting
// dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value.
dynChecker dynChecker
// These fields, once set by processOption, will not change.
exporters map[reflect.Type]bool // Set of structs with unexported field visibility
opts Options // List of all fundamental and filter options
}
func newState(opts []Option) *state {
s := new(state)
for _, opt := range opts {
s.processOption(opt)
}
return s
}
func (s *state) processOption(opt Option) {
switch opt := opt.(type) {
case nil:
case Options:
for _, o := range opt {
s.processOption(o)
}
case coreOption:
type filtered interface {
isFiltered() bool
}
if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
}
s.opts = append(s.opts, opt)
case visibleStructs:
if s.exporters == nil {
s.exporters = make(map[reflect.Type]bool)
}
for t := range opt {
s.exporters[t] = true
}
case reporter:
if s.reporter != nil {
panic("difference reporter already registered")
}
s.reporter = opt
default:
panic(fmt.Sprintf("unknown option %T", opt))
}
}
// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
// We do not save and restore the curPath because all of the compareX
// methods should properly push and pop from the path.
// It is an implementation bug if the contents of curPath differs from
// when calling this function to when returning from it.
oldResult, oldReporter := s.result, s.reporter
s.result = diff.Result{} // Reset result
s.reporter = nil // Remove reporter to avoid spurious printouts
s.compareAny(vx, vy)
res := s.result
s.result, s.reporter = oldResult, oldReporter
return res
}
func (s *state) compareAny(vx, vy reflect.Value) {
// TODO: Support cyclic data structures.
// Rule 0: Differing types are never equal.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), vx, vy)
return
}
if vx.Type() != vy.Type() {
s.report(false, vx, vy) // Possible for path to be empty
return
}
t := vx.Type()
if len(s.curPath) == 0 {
s.curPath.push(&pathStep{typ: t})
defer s.curPath.pop()
}
vx, vy = s.tryExporting(vx, vy)
// Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(vx, vy, t) {
return
}
// Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(vx, vy, t) {
return
}
// Rule 3: Recursively descend into each value's underlying kind.
switch t.Kind() {
case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), vx, vy)
return
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), vx, vy)
return
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), vx, vy)
return
case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), vx, vy)
return
case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), vx, vy)
return
case reflect.String:
s.report(vx.String() == vy.String(), vx, vy)
return
case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), vx, vy)
return
case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
case reflect.Ptr:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
s.curPath.push(&indirect{pathStep{t.Elem()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Interface:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
if vx.Elem().Type() != vy.Elem().Type() {
s.report(false, vx.Elem(), vy.Elem())
return
}
s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Slice:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
fallthrough
case reflect.Array:
s.compareArray(vx, vy, t)
return
case reflect.Map:
s.compareMap(vx, vy, t)
return
case reflect.Struct:
s.compareStruct(vx, vy, t)
return
default:
panic(fmt.Sprintf("%v kind not handled", t.Kind()))
}
}
func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
if sf.force {
// Use unsafe pointer arithmetic to get read-write access to an
// unexported field in the struct.
vx = unsafeRetrieveField(sf.pvx, sf.field)
vy = unsafeRetrieveField(sf.pvy, sf.field)
} else {
// We are not allowed to export the value, so invalidate them
// so that tryOptions can panic later if not explicitly ignored.
vx = nothing
vy = nothing
}
}
return vx, vy
}
func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
// If there were no FilterValues, we will not detect invalid inputs,
// so manually check for them and append invalid if necessary.
// We still evaluate the options since an ignore can override invalid.
opts := s.opts
if !vx.IsValid() || !vy.IsValid() {
opts = Options{opts, invalid{}}
}
// Evaluate all filters and apply the remaining options.
if opt := opts.filter(s, vx, vy, t); opt != nil {
return opt.apply(s, vx, vy)
}
return false
}
func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
// Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) {
return false
}
eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, vx, vy)
return true
}
func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0]
}
// Run the function twice and ensure that we get the same results back.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, v)
want := f.Call([]reflect.Value{v})[0]
if got := <-c; !s.statelessCompare(got, want).Equal() {
// To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself.
if !s.statelessCompare(want, want).Equal() {
return want
}
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
}
return want
}
func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{x, y})[0].Bool()
}
// Swapping the input arguments is sufficient to check that
// f is symmetric and deterministic.
// We run in goroutines so that the race detector (if enabled) can detect
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, y, x)
want := f.Call([]reflect.Value{x, y})[0].Bool()
if got := <-c; !got.IsValid() || got.Bool() != want {
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
}
return want
}
func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
var ret reflect.Value
defer func() {
recover() // Ignore panics, let the other call to f panic instead
c <- ret
}()
ret = f.Call(vs)[0]
}
func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
s.curPath.push(step)
// Compute an edit-script for slices vx and vy.
eq, es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
step.xkey, step.ykey = ix, iy
return s.statelessCompare(vx.Index(ix), vy.Index(iy))
})
// Equal or no edit-script, so report entire slices as is.
if eq || es == nil {
s.curPath.pop() // Pop first since we are reporting the whole slice
s.report(eq, vx, vy)
return
}
// Replay the edit-script.
var ix, iy int
for _, e := range es {
switch e {
case diff.UniqueX:
step.xkey, step.ykey = ix, -1
s.report(false, vx.Index(ix), nothing)
ix++
case diff.UniqueY:
step.xkey, step.ykey = -1, iy
s.report(false, nothing, vy.Index(iy))
iy++
default:
step.xkey, step.ykey = ix, iy
if e == diff.Identity {
s.report(true, vx.Index(ix), vy.Index(iy))
} else {
s.compareAny(vx.Index(ix), vy.Index(iy))
}
ix++
iy++
}
}
s.curPath.pop()
return
}
func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := &mapIndex{pathStep: pathStep{t.Elem()}}
s.curPath.push(step)
defer s.curPath.pop()
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.key = k
vvx := vx.MapIndex(k)
vvy := vy.MapIndex(k)
switch {
case vvx.IsValid() && vvy.IsValid():
s.compareAny(vvx, vvy)
case vvx.IsValid() && !vvy.IsValid():
s.report(false, vvx, nothing)
case !vvx.IsValid() && vvy.IsValid():
s.report(false, nothing, vvy)
default:
// It is possible for both vvx and vvy to be invalid if the
// key contained a NaN value in it. There is no way in
// reflection to be able to retrieve these values.
// See https://golang.org/issue/11104
panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
}
}
}
func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
var vax, vay reflect.Value // Addressable versions of vx and vy
step := &structField{}
s.curPath.push(step)
defer s.curPath.pop()
for i := 0; i < t.NumField(); i++ {
vvx := vx.Field(i)
vvy := vy.Field(i)
step.typ = t.Field(i).Type
step.name = t.Field(i).Name
step.idx = i
step.unexported = !isExported(step.name)
if step.unexported {
// Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() {
// For unsafeRetrieveField to work, the parent struct must
// be addressable. Create a new copy of the values if
// necessary to make them addressable.
vax = makeAddressable(vx)
vay = makeAddressable(vy)
}
step.force = s.exporters[t]
step.pvx = vax
step.pvy = vay
step.field = t.Field(i)
}
s.compareAny(vvx, vvy)
}
}
// report records the result of a single comparison.
// It also calls Report if any reporter is registered.
func (s *state) report(eq bool, vx, vy reflect.Value) {
if eq {
s.result.NSame++
} else {
s.result.NDiff++
}
if s.reporter != nil {
s.reporter.Report(vx, vy, eq, s.curPath)
}
}
// dynChecker tracks the state needed to periodically perform checks that
// user provided functions are symmetric and deterministic.
// The zero value is safe for immediate use.
type dynChecker struct{ curr, next int }
// Next increments the state and reports whether a check should be performed.
//
// Checks occur every Nth function call, where N is a triangular number:
// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
// See https://en.wikipedia.org/wiki/Triangular_number
//
// This sequence ensures that the cost of checks drops significantly as
// the number of functions calls grows larger.
func (dc *dynChecker) Next() bool {
ok := dc.curr == dc.next
if ok {
dc.curr = 0
dc.next++
}
dc.curr++
return ok
}
// makeAddressable returns a value that is always addressable.
// It returns the input verbatim if it is already addressable,
// otherwise it creates a new value and returns an addressable copy.
func makeAddressable(v reflect.Value) reflect.Value {
if v.CanAddr() {
return v
}
vc := reflect.New(v.Type()).Elem()
vc.Set(v)
return vc
}