2015-04-05 09:09:59 +00:00
|
|
|
package chunker
|
|
|
|
|
|
|
|
import (
|
|
|
|
"crypto/rand"
|
|
|
|
"encoding/binary"
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
"strconv"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Pol is a polynomial from F_2[X].
|
|
|
|
type Pol uint64
|
|
|
|
|
|
|
|
// Add returns x+y.
|
|
|
|
func (x Pol) Add(y Pol) Pol {
|
|
|
|
r := Pol(uint64(x) ^ uint64(y))
|
|
|
|
return r
|
|
|
|
}
|
|
|
|
|
|
|
|
// mulOverflows returns true if the multiplication would overflow uint64.
|
|
|
|
// Code by Rob Pike, see
|
|
|
|
// https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ
|
|
|
|
func mulOverflows(a, b Pol) bool {
|
|
|
|
if a <= 1 || b <= 1 {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
c := a.mul(b)
|
|
|
|
d := c.Div(b)
|
|
|
|
if d != a {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
func (x Pol) mul(y Pol) Pol {
|
|
|
|
if x == 0 || y == 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
var res Pol
|
|
|
|
for i := 0; i <= y.Deg(); i++ {
|
|
|
|
if (y & (1 << uint(i))) > 0 {
|
|
|
|
res = res.Add(x << uint(i))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mul returns x*y. When an overflow occurs, Mul panics.
|
|
|
|
func (x Pol) Mul(y Pol) Pol {
|
|
|
|
if mulOverflows(x, y) {
|
|
|
|
panic("multiplication would overflow uint64")
|
|
|
|
}
|
|
|
|
|
|
|
|
return x.mul(y)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Deg returns the degree of the polynomial x. If x is zero, -1 is returned.
|
|
|
|
func (x Pol) Deg() int {
|
|
|
|
// the degree of 0 is -1
|
|
|
|
if x == 0 {
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 63; i >= 0; i-- {
|
|
|
|
// test if bit i is set
|
|
|
|
if x&(1<<uint(i)) > 0 {
|
|
|
|
// this is the degree of x
|
|
|
|
return i
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fall-through, return -1
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
|
|
|
|
// String returns the coefficients in hex.
|
|
|
|
func (x Pol) String() string {
|
|
|
|
return "0x" + strconv.FormatUint(uint64(x), 16)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Expand returns the string representation of the polynomial x.
|
|
|
|
func (x Pol) Expand() string {
|
|
|
|
if x == 0 {
|
|
|
|
return "0"
|
|
|
|
}
|
|
|
|
|
|
|
|
s := ""
|
|
|
|
for i := x.Deg(); i > 1; i-- {
|
|
|
|
if x&(1<<uint(i)) > 0 {
|
|
|
|
s += fmt.Sprintf("+x^%d", i)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if x&2 > 0 {
|
|
|
|
s += "+x"
|
|
|
|
}
|
|
|
|
|
|
|
|
if x&1 > 0 {
|
|
|
|
s += "+1"
|
|
|
|
}
|
|
|
|
|
|
|
|
return s[1:]
|
|
|
|
}
|
|
|
|
|
|
|
|
// DivMod returns x / d = q, and remainder r,
|
|
|
|
// see https://en.wikipedia.org/wiki/Division_algorithm
|
|
|
|
func (x Pol) DivMod(d Pol) (Pol, Pol) {
|
|
|
|
if x == 0 {
|
|
|
|
return 0, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
if d == 0 {
|
|
|
|
panic("division by zero")
|
|
|
|
}
|
|
|
|
|
|
|
|
D := d.Deg()
|
|
|
|
diff := x.Deg() - D
|
|
|
|
if diff < 0 {
|
|
|
|
return 0, x
|
|
|
|
}
|
|
|
|
|
|
|
|
var q Pol
|
|
|
|
for diff >= 0 {
|
|
|
|
m := d << uint(diff)
|
|
|
|
q |= (1 << uint(diff))
|
|
|
|
x = x.Add(m)
|
|
|
|
|
|
|
|
diff = x.Deg() - D
|
|
|
|
}
|
|
|
|
|
|
|
|
return q, x
|
|
|
|
}
|
|
|
|
|
|
|
|
// Div returns the integer division result x / d.
|
|
|
|
func (x Pol) Div(d Pol) Pol {
|
|
|
|
q, _ := x.DivMod(d)
|
|
|
|
return q
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mod returns the remainder of x / d
|
|
|
|
func (x Pol) Mod(d Pol) Pol {
|
|
|
|
_, r := x.DivMod(d)
|
|
|
|
return r
|
|
|
|
}
|
|
|
|
|
|
|
|
// I really dislike having a function that does not terminate, so specify a
|
|
|
|
// really large upper bound for finding a new irreducible polynomial, and
|
|
|
|
// return an error when no irreducible polynomial has been found within
|
|
|
|
// randPolMaxTries.
|
|
|
|
const randPolMaxTries = 1e6
|
|
|
|
|
|
|
|
// RandomPolynomial returns a new random irreducible polynomial of degree 53
|
|
|
|
// (largest prime number below 64-8). There are (2^53-2/53) irreducible
|
|
|
|
// polynomials of degree 53 in F_2[X], c.f. Michael O. Rabin (1981):
|
|
|
|
// "Fingerprinting by Random Polynomials", page 4. If no polynomial could be
|
|
|
|
// found in one million tries, an error is returned.
|
|
|
|
func RandomPolynomial() (Pol, error) {
|
|
|
|
for i := 0; i < randPolMaxTries; i++ {
|
|
|
|
var f Pol
|
|
|
|
|
|
|
|
// choose polynomial at random
|
|
|
|
err := binary.Read(rand.Reader, binary.LittleEndian, &f)
|
|
|
|
if err != nil {
|
|
|
|
return 0, err
|
|
|
|
}
|
|
|
|
|
|
|
|
// mask away bits above bit 53
|
|
|
|
f &= Pol((1 << 54) - 1)
|
|
|
|
|
|
|
|
// set highest and lowest bit so that the degree is 53 and the
|
|
|
|
// polynomial is not trivially reducible
|
|
|
|
f |= (1 << 53) | 1
|
|
|
|
|
|
|
|
// test if f is irreducible
|
|
|
|
if f.Irreducible() {
|
|
|
|
return f, nil
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is reached, we haven't found an irreducible polynomial in
|
|
|
|
// randPolMaxTries. This error is very unlikely to occur.
|
|
|
|
return 0, errors.New("unable to find new random irreducible polynomial")
|
|
|
|
}
|
|
|
|
|
|
|
|
// GCD computes the Greatest Common Divisor x and f.
|
|
|
|
func (x Pol) GCD(f Pol) Pol {
|
|
|
|
if f == 0 {
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
|
|
|
|
if x == 0 {
|
|
|
|
return f
|
|
|
|
}
|
|
|
|
|
|
|
|
if x.Deg() < f.Deg() {
|
|
|
|
x, f = f, x
|
|
|
|
}
|
|
|
|
|
|
|
|
return f.GCD(x.Mod(f))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Irreducible returns true iff x is irreducible over F_2. This function
|
|
|
|
// uses Ben Or's reducibility test.
|
|
|
|
//
|
|
|
|
// For details see "Tests and Constructions of Irreducible Polynomials over
|
|
|
|
// Finite Fields".
|
|
|
|
func (x Pol) Irreducible() bool {
|
|
|
|
for i := 1; i <= x.Deg()/2; i++ {
|
|
|
|
if x.GCD(qp(uint(i), x)) != 1 {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
// MulMod computes x*f mod g
|
|
|
|
func (x Pol) MulMod(f, g Pol) Pol {
|
|
|
|
if x == 0 || f == 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
var res Pol
|
|
|
|
for i := 0; i <= f.Deg(); i++ {
|
|
|
|
if (f & (1 << uint(i))) > 0 {
|
|
|
|
a := x
|
|
|
|
for j := 0; j < i; j++ {
|
|
|
|
a = a.Mul(2).Mod(g)
|
|
|
|
}
|
|
|
|
res = res.Add(a).Mod(g)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
|
|
|
|
// qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the
|
|
|
|
// reducibility test.
|
|
|
|
func qp(p uint, g Pol) Pol {
|
|
|
|
num := (1 << p)
|
|
|
|
i := 1
|
|
|
|
|
|
|
|
// start with x
|
|
|
|
res := Pol(2)
|
|
|
|
|
|
|
|
for i < num {
|
|
|
|
// repeatedly square res
|
|
|
|
res = res.MulMod(res, g)
|
|
|
|
i *= 2
|
|
|
|
}
|
|
|
|
|
|
|
|
// add x
|
|
|
|
return res.Add(2).Mod(g)
|
|
|
|
}
|
2015-04-05 22:22:19 +00:00
|
|
|
|
|
|
|
func (p Pol) MarshalJSON() ([]byte, error) {
|
|
|
|
buf := strconv.AppendUint([]byte{'"'}, uint64(p), 16)
|
|
|
|
buf = append(buf, '"')
|
|
|
|
return buf, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (p *Pol) UnmarshalJSON(data []byte) error {
|
|
|
|
if len(data) < 2 {
|
|
|
|
return errors.New("invalid string for polynomial")
|
|
|
|
}
|
|
|
|
n, err := strconv.ParseUint(string(data[1:len(data)-1]), 16, 64)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
*p = Pol(n)
|
|
|
|
|
|
|
|
return nil
|
|
|
|
}
|