1
0
Fork 0
mirror of https://github.com/restic/restic.git synced 2024-12-30 19:57:19 +00:00
restic/vendor/github.com/google/go-cmp/cmp/cmpopts/equate.go
Alexander Neumann 4c00efd4bf Vendor go-cmp
2018-04-22 11:37:05 +02:00

89 lines
3 KiB
Go

// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmpopts provides common options for the cmp package.
package cmpopts
import (
"math"
"reflect"
"github.com/google/go-cmp/cmp"
)
func equateAlways(_, _ interface{}) bool { return true }
// EquateEmpty returns a Comparer option that determines all maps and slices
// with a length of zero to be equal, regardless of whether they are nil.
//
// EquateEmpty can be used in conjuction with SortSlices and SortMaps.
func EquateEmpty() cmp.Option {
return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways))
}
func isEmpty(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) &&
(vx.Len() == 0 && vy.Len() == 0)
}
// EquateApprox returns a Comparer option that determines float32 or float64
// values to be equal if they are within a relative fraction or absolute margin.
// This option is not used when either x or y is NaN or infinite.
//
// The fraction determines that the difference of two values must be within the
// smaller fraction of the two values, while the margin determines that the two
// values must be within some absolute margin.
// To express only a fraction or only a margin, use 0 for the other parameter.
// The fraction and margin must be non-negative.
//
// The mathematical expression used is equivalent to:
// |x-y| ≤ max(fraction*min(|x|, |y|), margin)
//
// EquateApprox can be used in conjuction with EquateNaNs.
func EquateApprox(fraction, margin float64) cmp.Option {
if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) {
panic("margin or fraction must be a non-negative number")
}
a := approximator{fraction, margin}
return cmp.Options{
cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)),
cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)),
}
}
type approximator struct{ frac, marg float64 }
func areRealF64s(x, y float64) bool {
return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0)
}
func areRealF32s(x, y float32) bool {
return areRealF64s(float64(x), float64(y))
}
func (a approximator) compareF64(x, y float64) bool {
relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y))
return math.Abs(x-y) <= math.Max(a.marg, relMarg)
}
func (a approximator) compareF32(x, y float32) bool {
return a.compareF64(float64(x), float64(y))
}
// EquateNaNs returns a Comparer option that determines float32 and float64
// NaN values to be equal.
//
// EquateNaNs can be used in conjuction with EquateApprox.
func EquateNaNs() cmp.Option {
return cmp.Options{
cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)),
cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)),
}
}
func areNaNsF64s(x, y float64) bool {
return math.IsNaN(x) && math.IsNaN(y)
}
func areNaNsF32s(x, y float32) bool {
return areNaNsF64s(float64(x), float64(y))
}