transmission/libtransmission/net.cc

738 lines
21 KiB
C++
Raw Normal View History

// This file Copyright © 2010-2023 Transmission authors and contributors.
// It may be used under the MIT (SPDX: MIT) license.
// License text can be found in the licenses/ folder.
2006-07-16 19:39:23 +00:00
#include <algorithm>
#include <array>
#include <cerrno>
#include <climits>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <iterator> // std::back_inserter
#include <string_view>
#include <utility> // std::pair
#include <sys/types.h>
#ifdef _WIN32
#include <ws2tcpip.h>
#else
#include <netinet/tcp.h> /* TCP_CONGESTION */
#endif
#include <event2/util.h>
2022-03-15 14:52:16 +00:00
#include <fmt/core.h>
#include <libutp/utp.h>
#include "libtransmission/transmission.h"
#include "libtransmission/log.h"
#include "libtransmission/net.h"
#include "libtransmission/peer-socket.h"
#include "libtransmission/session.h"
#include "libtransmission/tr-assert.h"
#include "libtransmission/tr-macros.h"
#include "libtransmission/tr-utp.h"
#include "libtransmission/utils.h"
#include "libtransmission/variant.h"
2007-07-09 20:10:42 +00:00
using namespace std::literals;
2009-01-02 21:45:55 +00:00
#ifndef IN_MULTICAST
#define IN_MULTICAST(a) (((a)&0xf0000000) == 0xe0000000)
2009-01-02 21:45:55 +00:00
#endif
std::string tr_net_strerror(int err)
{
#ifdef _WIN32
auto buf = std::array<char, 512>{};
(void)FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, 0, std::data(buf), std::size(buf), nullptr);
return std::string{ tr_strvStrip(std::data(buf)) };
#else
return std::string{ tr_strerror(err) };
#endif
}
// - TCP Sockets
2006-07-16 19:39:23 +00:00
[[nodiscard]] std::optional<tr_tos_t> tr_tos_t::from_string(std::string_view name)
{
auto const needle = tr_strlower(tr_strvStrip(name));
for (auto const& [value, key] : Names)
{
if (needle == key)
{
return tr_tos_t(value);
}
}
if (auto value = tr_parseNum<int>(needle); value)
{
return tr_tos_t(*value);
}
return {};
}
std::string tr_tos_t::toString() const
{
for (auto const& [value, key] : Names)
{
if (value_ == value)
{
return std::string{ key };
}
}
return std::to_string(value_);
}
void tr_netSetTOS([[maybe_unused]] tr_socket_t s, [[maybe_unused]] int tos, tr_address_type type)
2008-04-12 00:29:49 +00:00
{
if (s == TR_BAD_SOCKET)
{
return;
}
2017-08-02 10:01:39 +00:00
if (type == TR_AF_INET)
{
#if defined(IP_TOS) && !defined(_WIN32)
2017-08-02 10:01:39 +00:00
if (setsockopt(s, IPPROTO_IP, IP_TOS, (void const*)&tos, sizeof(tos)) == -1)
{
2022-03-15 14:52:16 +00:00
tr_logAddDebug(fmt::format("Can't set TOS '{}': {}", tos, tr_net_strerror(sockerrno)));
2017-08-02 10:01:39 +00:00
}
#endif
}
2017-08-02 10:01:39 +00:00
else if (type == TR_AF_INET6)
{
#if defined(IPV6_TCLASS) && !defined(_WIN32)
if (setsockopt(s, IPPROTO_IPV6, IPV6_TCLASS, (void const*)&tos, sizeof(tos)) == -1)
2017-08-02 10:01:39 +00:00
{
2022-03-15 14:52:16 +00:00
tr_logAddDebug(fmt::format("Can't set IPv6 QoS '{}': {}", tos, tr_net_strerror(sockerrno)));
2017-08-02 10:01:39 +00:00
}
2008-04-12 00:29:49 +00:00
#endif
2017-08-02 10:01:39 +00:00
}
else
{
/* program should never reach here! */
2022-03-15 14:52:16 +00:00
tr_logAddDebug("Something goes wrong while setting TOS/Traffic-Class");
2017-08-02 10:01:39 +00:00
}
2008-04-12 00:29:49 +00:00
}
void tr_netSetCongestionControl([[maybe_unused]] tr_socket_t s, [[maybe_unused]] char const* algorithm)
{
#ifdef TCP_CONGESTION
if (setsockopt(s, IPPROTO_TCP, TCP_CONGESTION, (void const*)algorithm, strlen(algorithm) + 1) == -1)
{
2022-03-15 14:52:16 +00:00
tr_logAddDebug(fmt::format("Can't set congestion control algorithm '{}': {}", algorithm, tr_net_strerror(sockerrno)));
}
#endif
}
static tr_socket_t createSocket(int domain, int type)
{
auto const sockfd = socket(domain, type, 0);
if (sockfd == TR_BAD_SOCKET)
{
if (sockerrno != EAFNOSUPPORT)
{
tr_logAddWarn(fmt::format(
_("Couldn't create socket: {error} ({error_code})"),
fmt::arg("error", tr_net_strerror(sockerrno)),
fmt::arg("error_code", sockerrno)));
}
return TR_BAD_SOCKET;
}
if (evutil_make_socket_nonblocking(sockfd) == -1)
{
tr_net_close_socket(sockfd);
return TR_BAD_SOCKET;
}
if (static bool buf_logged = false; !buf_logged)
{
int i = 0;
socklen_t size = sizeof(i);
if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, reinterpret_cast<char*>(&i), &size) != -1)
{
tr_logAddTrace(fmt::format("SO_SNDBUF size is {}", i));
}
i = 0;
size = sizeof(i);
if (getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<char*>(&i), &size) != -1)
{
tr_logAddTrace(fmt::format("SO_RCVBUF size is {}", i));
}
buf_logged = true;
}
return sockfd;
}
tr_peer_socket tr_netOpenPeerSocket(tr_session* session, tr_address const& addr, tr_port port, bool client_is_seed)
{
TR_ASSERT(addr.is_valid());
TR_ASSERT(!tr_peer_socket::limit_reached(session));
if (tr_peer_socket::limit_reached(session) || !session->allowsTCP() || !addr.is_valid_for_peers(port))
{
return {};
}
static auto constexpr Domains = std::array<int, NUM_TR_AF_INET_TYPES>{ AF_INET, AF_INET6 };
auto const s = createSocket(Domains[addr.type], SOCK_STREAM);
if (s == TR_BAD_SOCKET)
{
return {};
}
2006-07-16 19:39:23 +00:00
// seeds don't need a big read buffer, so make it smaller
if (client_is_seed)
{
int n = 8192;
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<char const*>(&n), sizeof(n)) == -1)
{
2022-03-15 14:52:16 +00:00
tr_logAddDebug(fmt::format("Unable to set SO_RCVBUF on socket {}: {}", s, tr_net_strerror(sockerrno)));
}
}
auto const [sock, addrlen] = addr.to_sockaddr(port);
2009-08-10 20:04:08 +00:00
// set source address
auto const source_addr = session->publicAddress(addr.type);
auto const [source_sock, sourcelen] = source_addr.to_sockaddr({});
2022-10-25 03:13:09 +00:00
if (bind(s, reinterpret_cast<sockaddr const*>(&source_sock), sourcelen) == -1)
{
2022-03-15 14:52:16 +00:00
tr_logAddWarn(fmt::format(
2022-03-16 00:51:36 +00:00
_("Couldn't set source address {address} on {socket}: {error} ({error_code})"),
fmt::arg("address", source_addr.display_name()),
2022-03-15 14:52:16 +00:00
fmt::arg("socket", s),
2022-03-16 00:51:36 +00:00
fmt::arg("error", tr_net_strerror(sockerrno)),
fmt::arg("error_code", sockerrno)));
tr_net_close_socket(s);
return {};
}
2006-07-16 19:39:23 +00:00
auto ret = tr_peer_socket{};
2022-10-25 03:13:09 +00:00
if (connect(s, reinterpret_cast<sockaddr const*>(&sock), addrlen) == -1 &&
#ifdef _WIN32
sockerrno != WSAEWOULDBLOCK &&
#endif
sockerrno != EINPROGRESS)
2006-07-16 19:39:23 +00:00
{
if (auto const tmperrno = sockerrno;
(tmperrno != ECONNREFUSED && tmperrno != ENETUNREACH && tmperrno != EHOSTUNREACH) || addr.is_ipv4())
{
2022-03-15 14:52:16 +00:00
tr_logAddWarn(fmt::format(
2022-03-16 00:51:36 +00:00
_("Couldn't connect socket {socket} to {address}:{port}: {error} ({error_code})"),
2022-03-15 14:52:16 +00:00
fmt::arg("socket", s),
fmt::arg("address", addr.display_name()),
fmt::arg("port", port.host()),
2022-03-16 00:51:36 +00:00
fmt::arg("error", tr_net_strerror(tmperrno)),
fmt::arg("error_code", tmperrno)));
}
tr_net_close_socket(s);
}
else
{
ret = tr_peer_socket{ session, addr, port, s };
2006-07-16 19:39:23 +00:00
}
tr_logAddTrace(fmt::format("New OUTGOING connection {} ({})", s, addr.display_name(port)));
2008-08-16 21:06:57 +00:00
return ret;
2006-07-16 19:39:23 +00:00
}
static tr_socket_t tr_netBindTCPImpl(tr_address const& addr, tr_port port, bool suppress_msgs, int* err_out)
2006-07-16 19:39:23 +00:00
{
TR_ASSERT(addr.is_valid());
static auto constexpr Domains = std::array<int, NUM_TR_AF_INET_TYPES>{ AF_INET, AF_INET6 };
auto const fd = socket(Domains[addr.type], SOCK_STREAM, 0);
if (fd == TR_BAD_SOCKET)
{
*err_out = sockerrno;
return TR_BAD_SOCKET;
}
2006-07-16 19:39:23 +00:00
if (evutil_make_socket_nonblocking(fd) == -1)
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
int optval = 1;
(void)setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, reinterpret_cast<char const*>(&optval), sizeof(optval));
(void)setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast<char const*>(&optval), sizeof(optval));
#ifdef IPV6_V6ONLY
if (addr.is_ipv6() &&
(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<char const*>(&optval), sizeof(optval)) == -1) &&
(sockerrno != ENOPROTOOPT)) // if the kernel doesn't support it, ignore it
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
#endif
auto const [sock, addrlen] = addr.to_sockaddr(port);
if (bind(fd, reinterpret_cast<sockaddr const*>(&sock), addrlen) == -1)
{
int const err = sockerrno;
if (!suppress_msgs)
{
2022-03-15 14:52:16 +00:00
tr_logAddError(fmt::format(
err == EADDRINUSE ?
2022-03-16 00:51:36 +00:00
_("Couldn't bind port {port} on {address}: {error} ({error_code}) -- Is another copy of Transmission already running?") :
_("Couldn't bind port {port} on {address}: {error} ({error_code})"),
fmt::arg("address", addr.display_name()),
fmt::arg("port", port.host()),
2022-03-16 00:51:36 +00:00
fmt::arg("error", tr_net_strerror(err)),
fmt::arg("error_code", err)));
}
tr_net_close_socket(fd);
*err_out = err;
return TR_BAD_SOCKET;
2006-07-16 19:39:23 +00:00
}
if (!suppress_msgs)
{
tr_logAddDebug(fmt::format(FMT_STRING("Bound socket {:d} to port {:d} on {:s}"), fd, port.host(), addr.display_name()));
}
#ifdef TCP_FASTOPEN
#ifndef SOL_TCP
#define SOL_TCP IPPROTO_TCP
#endif
optval = 5;
(void)setsockopt(fd, SOL_TCP, TCP_FASTOPEN, reinterpret_cast<char const*>(&optval), sizeof(optval));
#endif
#ifdef _WIN32
if (listen(fd, SOMAXCONN) == -1)
#else /* _WIN32 */
/* Listen queue backlog will be capped to the operating system's limit. */
if (listen(fd, INT_MAX) == -1)
#endif /* _WIN32 */
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
return fd;
2006-07-16 19:39:23 +00:00
}
tr_socket_t tr_netBindTCP(tr_address const& addr, tr_port port, bool suppress_msgs)
{
int unused = 0;
return tr_netBindTCPImpl(addr, port, suppress_msgs, &unused);
}
std::optional<std::tuple<tr_address, tr_port, tr_socket_t>> tr_netAccept(tr_session* session, tr_socket_t listening_sockfd)
2006-07-16 19:39:23 +00:00
{
TR_ASSERT(session != nullptr);
// accept the incoming connection
auto sock = sockaddr_storage{};
socklen_t len = sizeof(struct sockaddr_storage);
auto const sockfd = accept(listening_sockfd, reinterpret_cast<sockaddr*>(&sock), &len);
if (sockfd == TR_BAD_SOCKET)
{
return {};
}
// get the address and port,
// make the socket unblocking,
// and confirm we don't have too many peers
auto const addrport = tr_address::from_sockaddr(reinterpret_cast<struct sockaddr*>(&sock));
if (!addrport || evutil_make_socket_nonblocking(sockfd) == -1 || tr_peer_socket::limit_reached(session))
{
tr_net_close_socket(sockfd);
return {};
}
return std::make_tuple(addrport->first, addrport->second, sockfd);
2006-07-16 19:39:23 +00:00
}
void tr_net_close_socket(tr_socket_t sockfd)
{
evutil_closesocket(sockfd);
}
// ---
namespace
{
namespace is_valid_for_peers_helpers
{
[[nodiscard]] constexpr auto is_ipv4_mapped_address(tr_address const* addr)
{
return addr->is_ipv6() && IN6_IS_ADDR_V4MAPPED(&addr->addr.addr6);
}
[[nodiscard]] constexpr auto is_ipv6_link_local_address(tr_address const* addr)
{
return addr->is_ipv6() && IN6_IS_ADDR_LINKLOCAL(&addr->addr.addr6);
}
/* isMartianAddr was written by Juliusz Chroboczek,
and is covered under the same license as third-party/dht/dht.c. */
[[nodiscard]] auto is_martian_addr(tr_address const& addr)
{
static auto constexpr Zeroes = std::array<unsigned char, 16>{};
switch (addr.type)
{
case TR_AF_INET:
{
auto const* const address = reinterpret_cast<unsigned char const*>(&addr.addr.addr4);
return address[0] == 0 || address[0] == 127 || (address[0] & 0xE0) == 0xE0;
}
case TR_AF_INET6:
{
auto const* const address = reinterpret_cast<unsigned char const*>(&addr.addr.addr6);
return address[0] == 0xFF ||
(memcmp(address, std::data(Zeroes), 15) == 0 && (address[15] == 0 || address[15] == 1));
}
default:
return true;
}
}
} // namespace is_valid_for_peers_helpers
} // namespace
bool tr_address::is_valid_for_peers(tr_port port) const noexcept
{
using namespace is_valid_for_peers_helpers;
return is_valid() && !std::empty(port) && !is_ipv6_link_local_address(this) && !is_ipv4_mapped_address(this) &&
!is_martian_addr(*this);
}
// --- tr_port
std::pair<tr_port, std::byte const*> tr_port::fromCompact(std::byte const* compact) noexcept
{
static auto constexpr PortLen = size_t{ 2 };
static_assert(PortLen == sizeof(uint16_t));
auto nport = uint16_t{};
std::copy_n(compact, PortLen, reinterpret_cast<std::byte*>(&nport));
compact += PortLen;
return std::make_pair(tr_port::fromNetwork(nport), compact);
}
// --- tr_address
std::optional<tr_address> tr_address::from_string(std::string_view address_sv)
{
auto const address_sz = tr_strbuf<char, TR_ADDRSTRLEN>{ address_sv };
auto addr = tr_address{};
addr.addr.addr4 = {};
if (evutil_inet_pton(AF_INET, address_sz, &addr.addr.addr4) == 1)
{
addr.type = TR_AF_INET;
return addr;
}
addr.addr.addr6 = {};
if (evutil_inet_pton(AF_INET6, address_sz, &addr.addr.addr6) == 1)
{
addr.type = TR_AF_INET6;
return addr;
}
return {};
}
std::string_view tr_address::display_name(char* out, size_t outlen, tr_port port) const
{
if (std::empty(port))
{
return is_ipv4() ? evutil_inet_ntop(AF_INET, &addr, out, outlen) : evutil_inet_ntop(AF_INET6, &addr, out, outlen);
}
auto buf = std::array<char, INET6_ADDRSTRLEN>{};
auto const addr_sv = display_name(std::data(buf), std::size(buf));
auto const [end, size] = fmt::format_to_n(out, outlen - 1, FMT_STRING("[{:s}]:{:d}"), addr_sv, port.host());
return { out, size };
}
template<typename OutputIt>
OutputIt tr_address::display_name(OutputIt out, tr_port port) const
{
auto addrbuf = std::array<char, TR_ADDRSTRLEN + 16>{};
auto const addr_sv = display_name(std::data(addrbuf), std::size(addrbuf), port);
return std::copy(std::begin(addr_sv), std::end(addr_sv), out);
}
template char* tr_address::display_name<char*>(char*, tr_port) const;
[[nodiscard]] std::string tr_address::display_name(tr_port port) const
{
auto buf = std::string{};
buf.reserve(INET6_ADDRSTRLEN + 16);
this->display_name(std::back_inserter(buf), port);
return buf;
}
std::pair<tr_address, std::byte const*> tr_address::from_compact_ipv4(std::byte const* compact) noexcept
{
static auto constexpr Addr4Len = size_t{ 4 };
auto address = tr_address{};
static_assert(sizeof(address.addr.addr4) == Addr4Len);
address.type = TR_AF_INET;
std::copy_n(compact, Addr4Len, reinterpret_cast<std::byte*>(&address.addr));
compact += Addr4Len;
return std::make_pair(address, compact);
}
std::pair<tr_address, std::byte const*> tr_address::from_compact_ipv6(std::byte const* compact) noexcept
{
static auto constexpr Addr6Len = size_t{ 16 };
auto address = tr_address{};
address.type = TR_AF_INET6;
std::copy_n(compact, Addr6Len, reinterpret_cast<std::byte*>(&address.addr.addr6.s6_addr));
compact += Addr6Len;
return std::make_pair(address, compact);
}
std::optional<std::pair<tr_address, tr_port>> tr_address::from_sockaddr(struct sockaddr const* from)
{
if (from == nullptr)
{
return {};
}
if (from->sa_family == AF_INET)
{
auto const* const sin = reinterpret_cast<struct sockaddr_in const*>(from);
auto addr = tr_address{};
addr.type = TR_AF_INET;
addr.addr.addr4 = sin->sin_addr;
return std::make_pair(addr, tr_port::fromNetwork(sin->sin_port));
}
if (from->sa_family == AF_INET6)
{
auto const* const sin6 = reinterpret_cast<struct sockaddr_in6 const*>(from);
auto addr = tr_address{};
addr.type = TR_AF_INET6;
addr.addr.addr6 = sin6->sin6_addr;
return std::make_pair(addr, tr_port::fromNetwork(sin6->sin6_port));
}
return {};
}
std::pair<sockaddr_storage, socklen_t> tr_address::to_sockaddr(tr_port port) const noexcept
{
auto ss = sockaddr_storage{};
if (is_ipv4())
{
auto* const ss4 = reinterpret_cast<sockaddr_in*>(&ss);
ss4->sin_addr = addr.addr4;
ss4->sin_family = AF_INET;
ss4->sin_port = port.network();
return { ss, sizeof(sockaddr_in) };
}
auto* const ss6 = reinterpret_cast<sockaddr_in6*>(&ss);
ss6->sin6_addr = addr.addr6;
ss6->sin6_family = AF_INET6;
ss6->sin6_flowinfo = 0;
ss6->sin6_port = port.network();
return { ss, sizeof(sockaddr_in6) };
}
int tr_address::compare(tr_address const& that) const noexcept // <=>
{
// IPv6 addresses are always "greater than" IPv4
if (this->type != that.type)
{
return this->is_ipv4() ? 1 : -1;
}
return this->is_ipv4() ? memcmp(&this->addr.addr4, &that.addr.addr4, sizeof(this->addr.addr4)) :
memcmp(&this->addr.addr6.s6_addr, &that.addr.addr6.s6_addr, sizeof(this->addr.addr6.s6_addr));
}
// https://en.wikipedia.org/wiki/Reserved_IP_addresses
[[nodiscard]] bool tr_address::is_global_unicast_address() const noexcept
{
if (is_ipv4())
{
auto const* const a = reinterpret_cast<uint8_t const*>(&addr.addr4.s_addr);
// [0.0.0.00.255.255.255]
// Current network.
if (a[0] == 0)
{
return false;
}
// [10.0.0.0 10.255.255.255]
// Used for local communications within a private network.
if (a[0] == 10)
{
return false;
}
// [100.64.0.0100.127.255.255]
// Shared address space for communications between a service provider
// and its subscribers when using a carrier-grade NAT.
if ((a[0] == 100) && (64 <= a[1] && a[1] <= 127))
{
return false;
}
// [169.254.0.0169.254.255.255]
// Used for link-local addresses[5] between two hosts on a single link
// when no IP address is otherwise specified, such as would have
// normally been retrieved from a DHCP server.
if (a[0] == 169 && a[1] == 254)
{
return false;
}
// [172.16.0.0172.31.255.255]
// Used for local communications within a private network.
if ((a[0] == 172) && (16 <= a[1] && a[1] <= 31))
{
return false;
}
// [192.0.0.0192.0.0.255]
// IETF Protocol Assignments.
if (a[0] == 192 && a[1] == 0 && a[2] == 0)
{
return false;
}
// [192.0.2.0192.0.2.255]
// Assigned as TEST-NET-1, documentation and examples.
if (a[0] == 192 && a[1] == 0 && a[2] == 2)
{
return false;
}
// [192.88.99.0192.88.99.255]
// Reserved. Formerly used for IPv6 to IPv4 relay.
if (a[0] == 192 && a[1] == 88 && a[2] == 99)
{
return false;
}
// [192.168.0.0192.168.255.255]
// Used for local communications within a private network.
if (a[0] == 192 && a[1] == 168)
{
return false;
}
// [198.18.0.0198.19.255.255]
// Used for benchmark testing of inter-network communications
// between two separate subnets.
if (a[0] == 198 && (18 <= a[1] && a[1] <= 19))
{
return false;
}
// [198.51.100.0198.51.100.255]
// Assigned as TEST-NET-2, documentation and examples.
if (a[0] == 198 && a[1] == 51 && a[2] == 100)
{
return false;
}
// [203.0.113.0203.0.113.255]
// Assigned as TEST-NET-3, documentation and examples.
if (a[0] == 203 && a[1] == 0 && a[2] == 113)
{
return false;
}
// [224.0.0.0239.255.255.255]
// In use for IP multicast. (Former Class D network.)
if (224 <= a[0] && a[0] <= 230)
{
return false;
}
// [233.252.0.0-233.252.0.255]
// Assigned as MCAST-TEST-NET, documentation and examples.
if (a[0] == 233 && a[1] == 252 && a[2] == 0)
{
return false;
}
// [240.0.0.0255.255.255.254]
// Reserved for future use. (Former Class E network.)
// [255.255.255.255]
// Reserved for the "limited broadcast" destination address.
if (240 <= a[0])
{
return false;
}
return true;
}
if (is_ipv6())
{
auto const* const a = addr.addr6.s6_addr;
// TODO: 2000::/3 is commonly used for global unicast but technically
// other spaces would be allowable too, so we should test those here.
// See RFC 4291 in the Section 2.4 listing global unicast as everything
// that's not link-local, multicast, loopback, or unspecified.
return (a[0] & 0xE0) == 0x20;
}
return false;
}