// This file Copyright © Transmission authors and contributors. // It may be used under the MIT (SPDX: MIT) license. // License text can be found in the licenses/ folder. #include #include #include #include #include #include #include #include // std::back_inserter #include #include #include #include // std::pair #ifdef _WIN32 #include // must come before iphlpapi.h #include #include #else #include #include #include /* TCP_CONGESTION */ #endif #include #include #include "libtransmission/log.h" #include "libtransmission/net.h" #include "libtransmission/peer-socket.h" #include "libtransmission/session.h" #include "libtransmission/tr-assert.h" #include "libtransmission/tr-macros.h" #include "libtransmission/tr-strbuf.h" #include "libtransmission/utils.h" using namespace std::literals; std::string tr_net_strerror(int err) { #ifdef _WIN32 auto buf = std::array{}; (void)FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, 0, std::data(buf), std::size(buf), nullptr); return std::string{ tr_strv_strip(std::data(buf)) }; #else return std::string{ tr_strerror(err) }; #endif } std::string_view tr_ip_protocol_to_sv(tr_address_type type) { using namespace std::literals; switch (type) { case TR_AF_INET: return "IPv4"sv; case TR_AF_INET6: return "IPv6"sv; default: TR_ASSERT_MSG(false, "invalid address family"); return {}; } } int tr_ip_protocol_to_af(tr_address_type type) { switch (type) { case TR_AF_INET: return AF_INET; case TR_AF_INET6: return AF_INET6; default: TR_ASSERT_MSG(false, "invalid address family"); return {}; } } tr_address_type tr_af_to_ip_protocol(int af) { switch (af) { case AF_INET: return TR_AF_INET; case AF_INET6: return TR_AF_INET6; default: TR_ASSERT_MSG(false, "invalid address family"); return NUM_TR_AF_INET_TYPES; } } // - TCP Sockets [[nodiscard]] std::optional tr_tos_t::from_string(std::string_view name) { auto const needle = tr_strlower(tr_strv_strip(name)); for (auto const& [value, key] : Names) { if (needle == key) { return tr_tos_t(value); } } if (auto value = tr_num_parse(needle); value) { return tr_tos_t(*value); } return {}; } std::string tr_tos_t::toString() const { for (auto const& [value, key] : Names) { if (value_ == value) { return std::string{ key }; } } return std::to_string(value_); } void tr_netSetTOS([[maybe_unused]] tr_socket_t s, [[maybe_unused]] int tos, tr_address_type type) { if (s == TR_BAD_SOCKET) { return; } if (type == TR_AF_INET) { #if defined(IP_TOS) && !defined(_WIN32) if (setsockopt(s, IPPROTO_IP, IP_TOS, (void const*)&tos, sizeof(tos)) == -1) { tr_logAddDebug(fmt::format("Can't set TOS '{}': {}", tos, tr_net_strerror(sockerrno))); } #endif } else if (type == TR_AF_INET6) { #if defined(IPV6_TCLASS) && !defined(_WIN32) if (setsockopt(s, IPPROTO_IPV6, IPV6_TCLASS, (void const*)&tos, sizeof(tos)) == -1) { tr_logAddDebug(fmt::format("Can't set IPv6 QoS '{}': {}", tos, tr_net_strerror(sockerrno))); } #endif } else { /* program should never reach here! */ tr_logAddDebug("Something goes wrong while setting TOS/Traffic-Class"); } } void tr_netSetCongestionControl([[maybe_unused]] tr_socket_t s, [[maybe_unused]] char const* algorithm) { #ifdef TCP_CONGESTION if (setsockopt(s, IPPROTO_TCP, TCP_CONGESTION, (void const*)algorithm, strlen(algorithm) + 1) == -1) { tr_logAddDebug(fmt::format("Can't set congestion control algorithm '{}': {}", algorithm, tr_net_strerror(sockerrno))); } #endif } namespace { tr_socket_t createSocket(int domain, int type) { auto const sockfd = socket(domain, type, 0); if (sockfd == TR_BAD_SOCKET) { if (sockerrno != EAFNOSUPPORT) { tr_logAddWarn(fmt::format( _("Couldn't create socket: {error} ({error_code})"), fmt::arg("error", tr_net_strerror(sockerrno)), fmt::arg("error_code", sockerrno))); } return TR_BAD_SOCKET; } if (evutil_make_socket_nonblocking(sockfd) == -1) { tr_net_close_socket(sockfd); return TR_BAD_SOCKET; } if (static bool buf_logged = false; !buf_logged) { int i = 0; socklen_t size = sizeof(i); if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&i), &size) != -1) { tr_logAddTrace(fmt::format("SO_SNDBUF size is {}", i)); } i = 0; size = sizeof(i); if (getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&i), &size) != -1) { tr_logAddTrace(fmt::format("SO_RCVBUF size is {}", i)); } buf_logged = true; } return sockfd; } } // namespace tr_peer_socket tr_netOpenPeerSocket(tr_session* session, tr_socket_address const& socket_address, bool client_is_seed) { auto const& [addr, port] = socket_address; TR_ASSERT(addr.is_valid()); TR_ASSERT(!tr_peer_socket::limit_reached(session)); if (tr_peer_socket::limit_reached(session) || !session->allowsTCP() || !socket_address.is_valid()) { return {}; } auto const s = createSocket(tr_ip_protocol_to_af(addr.type), SOCK_STREAM); if (s == TR_BAD_SOCKET) { return {}; } // seeds don't need a big read buffer, so make it smaller if (client_is_seed) { int n = 8192; if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&n), sizeof(n)) == -1) { tr_logAddDebug(fmt::format("Unable to set SO_RCVBUF on socket {}: {}", s, tr_net_strerror(sockerrno))); } } auto const [sock, addrlen] = socket_address.to_sockaddr(); // set source address auto const source_addr = session->bind_address(addr.type); auto const [source_sock, sourcelen] = tr_socket_address::to_sockaddr(source_addr, {}); if (bind(s, reinterpret_cast(&source_sock), sourcelen) == -1) { tr_logAddWarn(fmt::format( _("Couldn't set source address {address} on {socket}: {error} ({error_code})"), fmt::arg("address", source_addr.display_name()), fmt::arg("socket", s), fmt::arg("error", tr_net_strerror(sockerrno)), fmt::arg("error_code", sockerrno))); tr_net_close_socket(s); return {}; } if (connect(s, reinterpret_cast(&sock), addrlen) == -1 && #ifdef _WIN32 sockerrno != WSAEWOULDBLOCK && #endif sockerrno != EINPROGRESS) { if (auto const tmperrno = sockerrno; (tmperrno != ECONNREFUSED && tmperrno != ENETUNREACH && tmperrno != EHOSTUNREACH) || addr.is_ipv4()) { tr_logAddWarn(fmt::format( _("Couldn't connect socket {socket} to {address}:{port}: {error} ({error_code})"), fmt::arg("socket", s), fmt::arg("address", addr.display_name()), fmt::arg("port", port.host()), fmt::arg("error", tr_net_strerror(tmperrno)), fmt::arg("error_code", tmperrno))); } tr_net_close_socket(s); return {}; } tr_logAddTrace(fmt::format("New OUTGOING connection {} ({})", s, socket_address.display_name())); return { session, socket_address, s }; } namespace { tr_socket_t tr_netBindTCPImpl(tr_address const& addr, tr_port port, bool suppress_msgs, int* err_out) { TR_ASSERT(addr.is_valid()); auto const fd = socket(tr_ip_protocol_to_af(addr.type), SOCK_STREAM, 0); if (fd == TR_BAD_SOCKET) { *err_out = sockerrno; return TR_BAD_SOCKET; } if (evutil_make_socket_nonblocking(fd) == -1) { *err_out = sockerrno; tr_net_close_socket(fd); return TR_BAD_SOCKET; } int optval = 1; (void)setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, reinterpret_cast(&optval), sizeof(optval)); (void)evutil_make_listen_socket_reuseable(fd); if (addr.is_ipv6() && evutil_make_listen_socket_ipv6only(fd) != 0 && sockerrno != ENOPROTOOPT) // if the kernel doesn't support it, ignore it { *err_out = sockerrno; tr_net_close_socket(fd); return TR_BAD_SOCKET; } auto const [sock, addrlen] = tr_socket_address::to_sockaddr(addr, port); if (bind(fd, reinterpret_cast(&sock), addrlen) == -1) { int const err = sockerrno; if (!suppress_msgs) { tr_logAddError(fmt::format( err == EADDRINUSE ? _("Couldn't bind port {port} on {address}: {error} ({error_code}) -- Is another copy of Transmission already running?") : _("Couldn't bind port {port} on {address}: {error} ({error_code})"), fmt::arg("address", addr.display_name()), fmt::arg("port", port.host()), fmt::arg("error", tr_net_strerror(err)), fmt::arg("error_code", err))); } tr_net_close_socket(fd); *err_out = err; return TR_BAD_SOCKET; } if (!suppress_msgs) { tr_logAddDebug(fmt::format("Bound socket {:d} to port {:d} on {:s}", fd, port.host(), addr.display_name())); } #ifdef TCP_FASTOPEN #ifndef SOL_TCP #define SOL_TCP IPPROTO_TCP #endif optval = 5; (void)setsockopt(fd, SOL_TCP, TCP_FASTOPEN, reinterpret_cast(&optval), sizeof(optval)); #endif #ifdef _WIN32 if (listen(fd, SOMAXCONN) == -1) #else /* _WIN32 */ /* Listen queue backlog will be capped to the operating system's limit. */ if (listen(fd, INT_MAX) == -1) #endif /* _WIN32 */ { *err_out = sockerrno; tr_net_close_socket(fd); return TR_BAD_SOCKET; } return fd; } } // namespace tr_socket_t tr_netBindTCP(tr_address const& addr, tr_port port, bool suppress_msgs) { int unused = 0; return tr_netBindTCPImpl(addr, port, suppress_msgs, &unused); } std::optional> tr_netAccept(tr_session* session, tr_socket_t listening_sockfd) { TR_ASSERT(session != nullptr); // accept the incoming connection auto sock = sockaddr_storage{}; socklen_t len = sizeof(struct sockaddr_storage); auto const sockfd = accept(listening_sockfd, reinterpret_cast(&sock), &len); if (sockfd == TR_BAD_SOCKET) { return {}; } // get the address and port, // make the socket unblocking, // and confirm we don't have too many peers auto const addrport = tr_socket_address::from_sockaddr(reinterpret_cast(&sock)); if (!addrport || evutil_make_socket_nonblocking(sockfd) == -1 || tr_peer_socket::limit_reached(session)) { tr_net_close_socket(sockfd); return {}; } return std::pair{ *addrport, sockfd }; } void tr_net_close_socket(tr_socket_t sockfd) { evutil_closesocket(sockfd); } // --- namespace { namespace is_valid_for_peers_helpers { /* isMartianAddr was written by Juliusz Chroboczek, and is covered under the same license as third-party/dht/dht.c. */ [[nodiscard]] auto is_martian_addr(tr_address const& addr, tr_peer_from from) { static auto constexpr Zeroes = std::array{}; auto const loopback_allowed = from == TR_PEER_FROM_INCOMING || from == TR_PEER_FROM_LPD || from == TR_PEER_FROM_RESUME; switch (addr.type) { case TR_AF_INET: { auto const* const address = reinterpret_cast(&addr.addr.addr4); return address[0] == 0 || // 0.x.x.x (!loopback_allowed && address[0] == 127) || // 127.x.x.x (address[0] & 0xE0) == 0xE0; // multicast address } case TR_AF_INET6: { auto const* const address = reinterpret_cast(&addr.addr.addr6); return address[0] == 0xFF || // multicast address (std::memcmp(address, std::data(Zeroes), 15) == 0 && (address[15] == 0 || // :: (!loopback_allowed && address[15] == 1)) // ::1 ); } default: return true; } } } // namespace is_valid_for_peers_helpers } // namespace // --- tr_port std::pair tr_port::from_compact(std::byte const* compact) noexcept { static auto constexpr PortLen = size_t{ 2 }; static_assert(PortLen == sizeof(uint16_t)); auto nport = uint16_t{}; std::copy_n(compact, PortLen, reinterpret_cast(&nport)); compact += PortLen; return std::make_pair(tr_port::from_network(nport), compact); } // --- tr_address std::optional tr_address::from_string(std::string_view address_sv) { auto const address_sz = tr_strbuf{ address_sv }; auto ss = sockaddr_storage{}; auto sslen = int{ sizeof(ss) }; if (evutil_parse_sockaddr_port(address_sz, reinterpret_cast(&ss), &sslen) != 0) { return {}; } auto addr = tr_address{}; switch (ss.ss_family) { case AF_INET: addr.addr.addr4 = reinterpret_cast(&ss)->sin_addr; addr.type = TR_AF_INET; return addr; case AF_INET6: addr.addr.addr6 = reinterpret_cast(&ss)->sin6_addr; addr.type = TR_AF_INET6; return addr; default: return {}; } } std::string_view tr_address::display_name(char* out, size_t outlen) const { TR_ASSERT(is_valid()); if (auto* name = evutil_inet_ntop(tr_ip_protocol_to_af(type), &addr, out, outlen)) { return name; } return "Invalid address"sv; } [[nodiscard]] std::string tr_address::display_name() const { auto buf = std::array{}; return std::string{ display_name(std::data(buf), std::size(buf)) }; } std::pair tr_address::from_compact_ipv4(std::byte const* compact) noexcept { static auto constexpr Addr4Len = tr_address::CompactAddrBytes[TR_AF_INET]; auto address = tr_address{}; static_assert(sizeof(address.addr.addr4) == Addr4Len); address.type = TR_AF_INET; std::copy_n(compact, Addr4Len, reinterpret_cast(&address.addr)); compact += Addr4Len; return { address, compact }; } std::pair tr_address::from_compact_ipv6(std::byte const* compact) noexcept { static auto constexpr Addr6Len = tr_address::CompactAddrBytes[TR_AF_INET6]; auto address = tr_address{}; address.type = TR_AF_INET6; std::copy_n(compact, Addr6Len, reinterpret_cast(&address.addr.addr6.s6_addr)); compact += Addr6Len; return { address, compact }; } std::optional tr_address::to_interface_index() const noexcept { if (!is_valid()) { tr_logAddDebug("Invalid target address to find interface index"); return {}; } tr_logAddDebug(fmt::format("Find interface index for {}", display_name())); #ifdef _WIN32 auto p_addresses = std::unique_ptr{ nullptr, operator delete }; // The recommended method of calling the GetAdaptersAddresses function is to // pre-allocate a 15KB working buffer pointed to by the AdapterAddresses parameter. // On typical computers, this dramatically reduces the chances that the // GetAdaptersAddresses function returns ERROR_BUFFER_OVERFLOW, which would require // calling GetAdaptersAddresses function multiple times. // https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getadaptersaddresses for (auto p_addresses_size = ULONG{ 15000 } /* 15KB */;;) { p_addresses.reset(operator new(p_addresses_size, std::nothrow)); if (!p_addresses) { tr_logAddDebug("Could not allocate memory for interface list"); return {}; } if (auto ret = GetAdaptersAddresses( AF_UNSPEC, GAA_FLAG_SKIP_FRIENDLY_NAME, nullptr, reinterpret_cast(p_addresses.get()), &p_addresses_size); ret != ERROR_BUFFER_OVERFLOW) { if (ret != ERROR_SUCCESS) { tr_logAddDebug(fmt::format("Failed to retrieve interface list: {} ({})", ret, tr_win32_format_message(ret))); return {}; } break; } } for (auto const* cur = reinterpret_cast(p_addresses.get()); cur != nullptr; cur = cur->Next) { if (cur->OperStatus != IfOperStatusUp) { continue; } for (auto const* sa_p = cur->FirstUnicastAddress; sa_p != nullptr; sa_p = sa_p->Next) { if (auto if_addr = tr_socket_address::from_sockaddr(sa_p->Address.lpSockaddr); if_addr && if_addr->address() == *this) { auto const ret = type == TR_AF_INET ? cur->IfIndex : cur->Ipv6IfIndex; tr_logAddDebug(fmt::format("Found interface index for {}: {}", display_name(), ret)); return ret; } } } #else struct ifaddrs* ifa = nullptr; if (getifaddrs(&ifa) != 0) { auto err = errno; tr_logAddDebug(fmt::format("Failed to retrieve interface list: {} ({})", err, tr_strerror(err))); return {}; } auto const ifa_uniq = std::unique_ptr{ ifa, freeifaddrs }; for (; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0U) { continue; } if (auto if_addr = tr_socket_address::from_sockaddr(ifa->ifa_addr); if_addr && if_addr->address() == *this) { auto const ret = if_nametoindex(ifa->ifa_name); tr_logAddDebug(fmt::format("Found interface index for {}: {}", display_name(), ret)); return ret; } } #endif tr_logAddDebug(fmt::format("Could not find interface index for {}", display_name())); return {}; } int tr_address::compare(tr_address const& that) const noexcept // <=> { // IPv6 addresses are always "greater than" IPv4 if (auto const val = tr_compare_3way(this->type, that.type); val != 0) { return val; } return this->is_ipv4() ? memcmp(&this->addr.addr4, &that.addr.addr4, sizeof(this->addr.addr4)) : memcmp(&this->addr.addr6.s6_addr, &that.addr.addr6.s6_addr, sizeof(this->addr.addr6.s6_addr)); } // https://en.wikipedia.org/wiki/Reserved_IP_addresses [[nodiscard]] bool tr_address::is_global_unicast_address() const noexcept { if (is_ipv4()) { auto const* const a = reinterpret_cast(&addr.addr4.s_addr); // [0.0.0.0–0.255.255.255] // Current network. if (a[0] == 0) { return false; } // [10.0.0.0 – 10.255.255.255] // Used for local communications within a private network. if (a[0] == 10) { return false; } // [100.64.0.0–100.127.255.255] // Shared address space for communications between a service provider // and its subscribers when using a carrier-grade NAT. if ((a[0] == 100) && (64 <= a[1] && a[1] <= 127)) { return false; } // [169.254.0.0–169.254.255.255] // Used for link-local addresses[5] between two hosts on a single link // when no IP address is otherwise specified, such as would have // normally been retrieved from a DHCP server. if (a[0] == 169 && a[1] == 254) { return false; } // [172.16.0.0–172.31.255.255] // Used for local communications within a private network. if ((a[0] == 172) && (16 <= a[1] && a[1] <= 31)) { return false; } // [192.0.0.0–192.0.0.255] // IETF Protocol Assignments. if (a[0] == 192 && a[1] == 0 && a[2] == 0) { return false; } // [192.0.2.0–192.0.2.255] // Assigned as TEST-NET-1, documentation and examples. if (a[0] == 192 && a[1] == 0 && a[2] == 2) { return false; } // [192.88.99.0–192.88.99.255] // Reserved. Formerly used for IPv6 to IPv4 relay. if (a[0] == 192 && a[1] == 88 && a[2] == 99) { return false; } // [192.168.0.0–192.168.255.255] // Used for local communications within a private network. if (a[0] == 192 && a[1] == 168) { return false; } // [198.18.0.0–198.19.255.255] // Used for benchmark testing of inter-network communications // between two separate subnets. if (a[0] == 198 && (18 <= a[1] && a[1] <= 19)) { return false; } // [198.51.100.0–198.51.100.255] // Assigned as TEST-NET-2, documentation and examples. if (a[0] == 198 && a[1] == 51 && a[2] == 100) { return false; } // [203.0.113.0–203.0.113.255] // Assigned as TEST-NET-3, documentation and examples. if (a[0] == 203 && a[1] == 0 && a[2] == 113) { return false; } // [224.0.0.0–239.255.255.255] // In use for IP multicast. (Former Class D network.) if (224 <= a[0] && a[0] <= 230) { return false; } // [233.252.0.0-233.252.0.255] // Assigned as MCAST-TEST-NET, documentation and examples. if (a[0] == 233 && a[1] == 252 && a[2] == 0) { return false; } // [240.0.0.0–255.255.255.254] // Reserved for future use. (Former Class E network.) // [255.255.255.255] // Reserved for the "limited broadcast" destination address. if (240 <= a[0]) { return false; } return true; } if (is_ipv6()) { auto const* const a = addr.addr6.s6_addr; // TODO: 2000::/3 is commonly used for global unicast but technically // other spaces would be allowable too, so we should test those here. // See RFC 4291 in the Section 2.4 listing global unicast as everything // that's not link-local, multicast, loopback, or unspecified. return (a[0] & 0xE0) == 0x20; } return false; } // --- tr_socket_addrses std::string tr_socket_address::display_name(tr_address const& address, tr_port port) noexcept { return fmt::format(address.is_ipv6() ? "[{:s}]:{:d}" : "{:s}:{:d}", address.display_name(), port.host()); } bool tr_socket_address::is_valid_for_peers(tr_peer_from from) const noexcept { using namespace is_valid_for_peers_helpers; return is_valid() && !std::empty(port_) && !address_.is_ipv6_link_local_address() && !address_.is_ipv4_mapped_address() && !is_martian_addr(address_, from); } std::optional tr_socket_address::from_string(std::string_view sockaddr_sv) { auto ss = sockaddr_storage{}; auto sslen = int{ sizeof(ss) }; if (evutil_parse_sockaddr_port(tr_strbuf{ sockaddr_sv }, reinterpret_cast(&ss), &sslen) != 0) { return {}; } return from_sockaddr(reinterpret_cast(&ss)); } std::optional tr_socket_address::from_sockaddr(struct sockaddr const* from) { if (from == nullptr) { return {}; } if (from->sa_family == AF_INET) { auto const* const sin = reinterpret_cast(from); auto addr = tr_address{}; addr.type = TR_AF_INET; addr.addr.addr4 = sin->sin_addr; return tr_socket_address{ addr, tr_port::from_network(sin->sin_port) }; } if (from->sa_family == AF_INET6) { auto const* const sin6 = reinterpret_cast(from); auto addr = tr_address{}; addr.type = TR_AF_INET6; addr.addr.addr6 = sin6->sin6_addr; return tr_socket_address{ addr, tr_port::from_network(sin6->sin6_port) }; } tr_logAddDebug(fmt::format("Unsupported address family {:d}", from->sa_family)); return {}; } std::pair tr_socket_address::to_sockaddr(tr_address const& addr, tr_port port) noexcept { auto ss = sockaddr_storage{}; if (addr.is_ipv4()) { auto* const ss4 = reinterpret_cast(&ss); ss4->sin_addr = addr.addr.addr4; ss4->sin_family = AF_INET; ss4->sin_port = port.network(); return { ss, sizeof(sockaddr_in) }; } auto* const ss6 = reinterpret_cast(&ss); ss6->sin6_addr = addr.addr.addr6; ss6->sin6_family = AF_INET6; ss6->sin6_flowinfo = 0; ss6->sin6_port = port.network(); return { ss, sizeof(sockaddr_in6) }; }