// This file Copyright © 2017-2022 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include #include #include #include #include #include #include "transmission.h" #include "clients.h" #include "crypto-utils.h" #include "handshake.h" #include "log.h" #include "peer-io.h" #include "tr-assert.h" #include "utils.h" using namespace std::literals; /* enable LibTransmission extension protocol */ #define ENABLE_LTEP /* fast extensions */ #define ENABLE_FAST /* DHT */ #define ENABLE_DHT /*** **** ***/ #define HANDSHAKE_NAME "\023BitTorrent protocol" // bittorrent handshake constants static auto constexpr HANDSHAKE_NAME_LEN = int{ 20 }; static auto constexpr HANDSHAKE_FLAGS_LEN = int{ 8 }; static auto constexpr HANDSHAKE_SIZE = int{ 68 }; static auto constexpr INCOMING_HANDSHAKE_LEN = int{ 48 }; // encryption constants static auto constexpr PadA_MAXLEN = int{ 512 }; static auto constexpr PadB_MAXLEN = int{ 512 }; static auto constexpr CRYPTO_PROVIDE_PLAINTEXT = int{ 1 }; static auto constexpr CRYPTO_PROVIDE_CRYPTO = int{ 2 }; // "VC is a verification constant that is used to verify whether the // other side knows S and SKEY and thus defeats replay attacks of the // SKEY hash. As of this version VC is a String of 8 bytes set to 0x00. using vc_t = std::array; static auto constexpr VC = vc_t{}; // how long to wait before giving up on a handshake static auto constexpr HANDSHAKE_TIMEOUT_SEC = int{ 30 }; #ifdef ENABLE_LTEP #define HANDSHAKE_HAS_LTEP(bits) (((bits)[5] & 0x10) != 0) #define HANDSHAKE_SET_LTEP(bits) ((bits)[5] |= 0x10) #else #define HANDSHAKE_HAS_LTEP(bits) (false) #define HANDSHAKE_SET_LTEP(bits) ((void)0) #endif #ifdef ENABLE_FAST #define HANDSHAKE_HAS_FASTEXT(bits) (((bits)[7] & 0x04) != 0) #define HANDSHAKE_SET_FASTEXT(bits) ((bits)[7] |= 0x04) #else #define HANDSHAKE_HAS_FASTEXT(bits) (false) #define HANDSHAKE_SET_FASTEXT(bits) ((void)0) #endif #ifdef ENABLE_DHT #define HANDSHAKE_HAS_DHT(bits) (((bits)[7] & 0x01) != 0) #define HANDSHAKE_SET_DHT(bits) ((bits)[7] |= 0x01) #else #define HANDSHAKE_HAS_DHT(bits) (false) #define HANDSHAKE_SET_DHT(bits) ((void)0) #endif /** *** **/ using DH = tr_message_stream_encryption::DH; enum handshake_state_t { /* incoming */ AWAITING_HANDSHAKE, AWAITING_PEER_ID, AWAITING_YA, AWAITING_PAD_A, AWAITING_CRYPTO_PROVIDE, AWAITING_PAD_C, AWAITING_IA, AWAITING_PAYLOAD_STREAM, /* outgoing */ AWAITING_YB, AWAITING_VC, AWAITING_CRYPTO_SELECT, AWAITING_PAD_D, /* */ N_STATES }; struct tr_handshake { tr_handshake(std::shared_ptr mediator_in) : mediator{ std::move(mediator_in) } , dh{ mediator->privateKey() } { } ~tr_handshake() { if (io != nullptr) { tr_peerIoUnref(io); /* balanced by the ref in tr_handshakeNew */ } event_free(timeout_timer); } [[nodiscard]] auto constexpr isIncoming() const noexcept { return io->isIncoming(); } std::shared_ptr const mediator; bool haveReadAnythingFromPeer; bool haveSentBitTorrentHandshake; tr_peerIo* io; DH dh; handshake_state_t state; tr_encryption_mode encryptionMode; uint16_t pad_c_len; uint16_t pad_d_len; uint16_t ia_len; uint32_t crypto_select; uint32_t crypto_provide; tr_sha1_digest_t myReq1; struct event* timeout_timer; std::optional peer_id; tr_handshake_done_func done_func; void* done_func_user_data; }; /** *** **/ #define tr_logAddTraceHand(handshake, msg) tr_logAddTrace(msg, (handshake)->io->addrStr()) static char const* getStateName(handshake_state_t const state) { static char const* const state_strings[N_STATES] = { "awaiting handshake", /* AWAITING_HANDSHAKE */ "awaiting peer id", /* AWAITING_PEER_ID */ "awaiting ya", /* AWAITING_YA */ "awaiting pad a", /* AWAITING_PAD_A */ "awaiting crypto_provide", /* AWAITING_CRYPTO_PROVIDE */ "awaiting pad c", /* AWAITING_PAD_C */ "awaiting ia", /* AWAITING_IA */ "awaiting payload stream", /* AWAITING_PAYLOAD_STREAM */ "awaiting yb", /* AWAITING_YB */ "awaiting vc", /* AWAITING_VC */ "awaiting crypto select", /* AWAITING_CRYPTO_SELECT */ "awaiting pad d" /* AWAITING_PAD_D */ }; return state < N_STATES ? state_strings[state] : "unknown state"; } static void setState(tr_handshake* handshake, handshake_state_t state) { tr_logAddTraceHand(handshake, fmt::format("setting to state [{}]", getStateName(state))); handshake->state = state; } static void setReadState(tr_handshake* handshake, handshake_state_t state) { setState(handshake, state); } static bool buildHandshakeMessage(tr_handshake* handshake, uint8_t* buf) { auto const info_hash = handshake->io->torrentHash(); auto const info = info_hash ? handshake->mediator->torrentInfo(*info_hash) : std::nullopt; if (!info) { return false; } uint8_t* walk = buf; walk = std::copy_n(HANDSHAKE_NAME, HANDSHAKE_NAME_LEN, walk); memset(walk, 0, HANDSHAKE_FLAGS_LEN); HANDSHAKE_SET_LTEP(walk); HANDSHAKE_SET_FASTEXT(walk); /* Note that this doesn't depend on whether the torrent is private. * We don't accept DHT peers for a private torrent, * but we participate in the DHT regardless. */ if (handshake->mediator->isDHTEnabled()) { HANDSHAKE_SET_DHT(walk); } walk += HANDSHAKE_FLAGS_LEN; walk = std::copy_n(reinterpret_cast(std::data(*info_hash)), std::size(*info_hash), walk); walk = std::copy(std::begin(info->client_peer_id), std::end(info->client_peer_id), walk); TR_ASSERT(walk - buf == HANDSHAKE_SIZE); return true; } static ReadState tr_handshakeDone(tr_handshake* handshake, bool isConnected); enum handshake_parse_err_t { HANDSHAKE_OK, HANDSHAKE_ENCRYPTION_WRONG, HANDSHAKE_BAD_TORRENT, HANDSHAKE_PEER_IS_SELF, }; static handshake_parse_err_t parseHandshake(tr_handshake* handshake, struct evbuffer* inbuf) { uint8_t name[HANDSHAKE_NAME_LEN]; uint8_t reserved[HANDSHAKE_FLAGS_LEN]; tr_logAddTraceHand(handshake, fmt::format("payload: need {}, got {}", HANDSHAKE_SIZE, evbuffer_get_length(inbuf))); if (evbuffer_get_length(inbuf) < HANDSHAKE_SIZE) { return HANDSHAKE_ENCRYPTION_WRONG; } /* confirm the protocol */ tr_peerIoReadBytes(handshake->io, inbuf, name, HANDSHAKE_NAME_LEN); if (memcmp(name, HANDSHAKE_NAME, HANDSHAKE_NAME_LEN) != 0) { return HANDSHAKE_ENCRYPTION_WRONG; } /* read the reserved bytes */ tr_peerIoReadBytes(handshake->io, inbuf, reserved, HANDSHAKE_FLAGS_LEN); /* torrent hash */ auto hash = tr_sha1_digest_t{}; tr_peerIoReadBytes(handshake->io, inbuf, std::data(hash), std::size(hash)); if (auto const torrent_hash = handshake->io->torrentHash(); !torrent_hash || *torrent_hash != hash) { tr_logAddTraceHand(handshake, "peer returned the wrong hash. wtf?"); return HANDSHAKE_BAD_TORRENT; } // peer_id auto peer_id = tr_peer_id_t{}; tr_peerIoReadBytes(handshake->io, inbuf, std::data(peer_id), std::size(peer_id)); handshake->peer_id = peer_id; /* peer id */ auto const peer_id_sv = std::string_view{ std::data(peer_id), std::size(peer_id) }; tr_logAddTraceHand(handshake, fmt::format("peer-id is '{}'", peer_id_sv)); if (auto const info = handshake->mediator->torrentInfo(hash); info && info->client_peer_id == peer_id) { tr_logAddTraceHand(handshake, "streuth! we've connected to ourselves."); return HANDSHAKE_PEER_IS_SELF; } /** *** Extensions **/ handshake->io->enableDHT(HANDSHAKE_HAS_DHT(reserved)); handshake->io->enableLTEP(HANDSHAKE_HAS_LTEP(reserved)); handshake->io->enableFEXT(HANDSHAKE_HAS_FASTEXT(reserved)); return HANDSHAKE_OK; } /*** **** **** OUTGOING CONNECTIONS **** ***/ template static void sendPublicKeyAndPad(tr_handshake* handshake) { auto const public_key = handshake->dh.publicKey(); auto outbuf = std::array{}; auto const data = std::data(outbuf); auto walk = data; walk = std::copy(std::begin(public_key), std::end(public_key), walk); walk += handshake->mediator->pad(walk, PadMax); tr_peerIoWriteBytes(handshake->io, data, walk - data, false); } // 1 A->B: our public key (Ya) and some padding (PadA) static void sendYa(tr_handshake* handshake) { sendPublicKeyAndPad(handshake); setReadState(handshake, AWAITING_YB); } static uint32_t getCryptoProvide(tr_handshake const* handshake) { uint32_t provide = 0; switch (handshake->encryptionMode) { case TR_ENCRYPTION_REQUIRED: case TR_ENCRYPTION_PREFERRED: provide |= CRYPTO_PROVIDE_CRYPTO; break; case TR_CLEAR_PREFERRED: provide |= CRYPTO_PROVIDE_CRYPTO | CRYPTO_PROVIDE_PLAINTEXT; break; } return provide; } static uint32_t getCryptoSelect(tr_handshake const* handshake, uint32_t crypto_provide) { uint32_t choices[2]; int nChoices = 0; switch (handshake->encryptionMode) { case TR_ENCRYPTION_REQUIRED: choices[nChoices++] = CRYPTO_PROVIDE_CRYPTO; break; case TR_ENCRYPTION_PREFERRED: choices[nChoices++] = CRYPTO_PROVIDE_CRYPTO; choices[nChoices++] = CRYPTO_PROVIDE_PLAINTEXT; break; case TR_CLEAR_PREFERRED: choices[nChoices++] = CRYPTO_PROVIDE_PLAINTEXT; choices[nChoices++] = CRYPTO_PROVIDE_CRYPTO; break; } for (int i = 0; i < nChoices; ++i) { if ((crypto_provide & choices[i]) != 0) { return choices[i]; } } return 0; } static ReadState readYb(tr_handshake* handshake, struct evbuffer* inbuf) { size_t needlen = HANDSHAKE_NAME_LEN; if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } bool const isEncrypted = memcmp(evbuffer_pullup(inbuf, HANDSHAKE_NAME_LEN), HANDSHAKE_NAME, HANDSHAKE_NAME_LEN) != 0; auto peer_public_key = DH::key_bigend_t{}; if (isEncrypted) { needlen = std::size(peer_public_key); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } } tr_logAddTraceHand(handshake, isEncrypted ? "got an encrypted handshake" : "got a plain handshake"); if (!isEncrypted) { setState(handshake, AWAITING_HANDSHAKE); return READ_NOW; } handshake->haveReadAnythingFromPeer = true; // get the peer's public key evbuffer_remove(inbuf, std::data(peer_public_key), std::size(peer_public_key)); handshake->dh.setPeerPublicKey(peer_public_key); /* now send these: HASH('req1', S), HASH('req2', SKEY) xor HASH('req3', S), * ENCRYPT(VC, crypto_provide, len(PadC), PadC, len(IA)), ENCRYPT(IA) */ evbuffer* const outbuf = evbuffer_new(); /* HASH('req1', S) */ if (auto const req1 = tr_sha1("req1"sv, handshake->dh.secret()); req1) { evbuffer_add(outbuf, std::data(*req1), std::size(*req1)); } else { tr_logAddTraceHand(handshake, "error while computing req1 hash after Yb"); return tr_handshakeDone(handshake, false); } auto const info_hash = handshake->io->torrentHash(); if (!info_hash) { tr_logAddTraceHand(handshake, "error while computing req2/req3 hash after Yb"); return tr_handshakeDone(handshake, false); } /* HASH('req2', SKEY) xor HASH('req3', S) */ { auto const req2 = tr_sha1("req2"sv, *info_hash); auto const req3 = tr_sha1("req3"sv, handshake->dh.secret()); if (!req2 || !req3) { tr_logAddTraceHand(handshake, "error while computing req2/req3 hash after Yb"); return tr_handshakeDone(handshake, false); } auto buf = tr_sha1_digest_t{}; for (size_t i = 0, n = std::size(buf); i < n; ++i) { buf[i] = (*req2)[i] ^ (*req3)[i]; } evbuffer_add(outbuf, std::data(buf), std::size(buf)); } /* ENCRYPT(VC, crypto_provide, len(PadC), PadC * PadC is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ tr_peerIoWriteBuf(handshake->io, outbuf, false); handshake->io->encryptInit(handshake->io->isIncoming(), handshake->dh, *info_hash); evbuffer_add(outbuf, std::data(VC), std::size(VC)); evbuffer_add_uint32(outbuf, getCryptoProvide(handshake)); evbuffer_add_uint16(outbuf, 0); /* ENCRYPT len(IA)), ENCRYPT(IA) */ if (uint8_t msg[HANDSHAKE_SIZE]; buildHandshakeMessage(handshake, msg)) { evbuffer_add_uint16(outbuf, sizeof(msg)); evbuffer_add(outbuf, msg, sizeof(msg)); handshake->haveSentBitTorrentHandshake = true; } else { return tr_handshakeDone(handshake, false); } /* send it */ handshake->io->decryptInit(handshake->io->isIncoming(), handshake->dh, *info_hash); setReadState(handshake, AWAITING_VC); tr_peerIoWriteBuf(handshake->io, outbuf, false); /* cleanup */ evbuffer_free(outbuf); return READ_LATER; } // MSE spec: "Since the length of [PadB is] unknown, // A will be able to resynchronize on ENCRYPT(VC)" static ReadState readVC(tr_handshake* handshake, struct evbuffer* inbuf) { auto tmp = vc_t{}; /* note: this works w/o having to `unwind' the buffer if * we read too much, but it is pretty brute-force. * it would be nice to make this cleaner. */ for (;;) { if (evbuffer_get_length(inbuf) < std::size(tmp)) { tr_logAddTraceHand(handshake, "not enough bytes... returning read_more"); return READ_LATER; } std::copy_n(reinterpret_cast(evbuffer_pullup(inbuf, std::size(tmp))), std::size(tmp), std::data(tmp)); handshake->io->decryptInit(handshake->io->isIncoming(), handshake->dh, *handshake->io->torrentHash()); handshake->io->decrypt(std::size(tmp), std::data(tmp)); if (tmp == VC) { break; } evbuffer_drain(inbuf, 1); } tr_logAddTraceHand(handshake, "got it!"); evbuffer_drain(inbuf, std::size(VC)); setState(handshake, AWAITING_CRYPTO_SELECT); return READ_NOW; } static ReadState readCryptoSelect(tr_handshake* handshake, struct evbuffer* inbuf) { static size_t const needlen = sizeof(uint32_t) + sizeof(uint16_t); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } uint32_t crypto_select = 0; tr_peerIoReadUint32(handshake->io, inbuf, &crypto_select); handshake->crypto_select = crypto_select; tr_logAddTraceHand(handshake, fmt::format("crypto select is {}", crypto_select)); if ((crypto_select & getCryptoProvide(handshake)) == 0) { tr_logAddTraceHand(handshake, "peer selected an encryption option we didn't offer"); return tr_handshakeDone(handshake, false); } uint16_t pad_d_len = 0; tr_peerIoReadUint16(handshake->io, inbuf, &pad_d_len); tr_logAddTraceHand(handshake, fmt::format("pad_d_len is {}", pad_d_len)); if (pad_d_len > 512) { tr_logAddTraceHand(handshake, "encryption handshake: pad_d_len is too long"); return tr_handshakeDone(handshake, false); } handshake->pad_d_len = pad_d_len; setState(handshake, AWAITING_PAD_D); return READ_NOW; } static ReadState readPadD(tr_handshake* handshake, struct evbuffer* inbuf) { size_t const needlen = handshake->pad_d_len; tr_logAddTraceHand(handshake, fmt::format("pad d: need {}, got {}", needlen, evbuffer_get_length(inbuf))); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } tr_peerIoDrain(handshake->io, inbuf, needlen); setState(handshake, AWAITING_HANDSHAKE); return READ_NOW; } /*** **** **** INCOMING CONNECTIONS **** ***/ static ReadState readHandshake(tr_handshake* handshake, struct evbuffer* inbuf) { tr_logAddTraceHand(handshake, fmt::format("payload: need {}, got {}", INCOMING_HANDSHAKE_LEN, evbuffer_get_length(inbuf))); if (evbuffer_get_length(inbuf) < INCOMING_HANDSHAKE_LEN) { return READ_LATER; } handshake->haveReadAnythingFromPeer = true; uint8_t pstrlen = evbuffer_pullup(inbuf, 1)[0]; /* peek, don't read. We may be handing inbuf to AWAITING_YA */ if (pstrlen == 19) /* unencrypted */ { if (handshake->encryptionMode == TR_ENCRYPTION_REQUIRED) { tr_logAddTraceHand(handshake, "peer is unencrypted, and we're disallowing that"); return tr_handshakeDone(handshake, false); } } else /* encrypted or corrupt */ { if (handshake->isIncoming()) { tr_logAddTraceHand(handshake, "I think peer is sending us an encrypted handshake..."); setState(handshake, AWAITING_YA); return READ_NOW; } handshake->io->decrypt(1, &pstrlen); if (pstrlen != 19) { tr_logAddTraceHand(handshake, "I think peer has sent us a corrupt handshake..."); return tr_handshakeDone(handshake, false); } } evbuffer_drain(inbuf, 1); /* pstr (BitTorrent) */ TR_ASSERT(pstrlen == 19); uint8_t pstr[20]; tr_peerIoReadBytes(handshake->io, inbuf, pstr, pstrlen); pstr[pstrlen] = '\0'; if (strncmp((char const*)pstr, "BitTorrent protocol", 19) != 0) { return tr_handshakeDone(handshake, false); } /* reserved bytes */ uint8_t reserved[HANDSHAKE_FLAGS_LEN]; tr_peerIoReadBytes(handshake->io, inbuf, reserved, sizeof(reserved)); /** *** Extensions **/ handshake->io->enableDHT(HANDSHAKE_HAS_DHT(reserved)); handshake->io->enableLTEP(HANDSHAKE_HAS_LTEP(reserved)); handshake->io->enableFEXT(HANDSHAKE_HAS_FASTEXT(reserved)); /* torrent hash */ auto hash = tr_sha1_digest_t{}; tr_peerIoReadBytes(handshake->io, inbuf, std::data(hash), std::size(hash)); if (handshake->isIncoming()) { if (!handshake->mediator->torrentInfo(hash)) { tr_logAddTraceHand(handshake, "peer is trying to connect to us for a torrent we don't have."); return tr_handshakeDone(handshake, false); } handshake->io->setTorrentHash(hash); } else /* outgoing */ { auto const torrent_hash = handshake->io->torrentHash(); if (!torrent_hash || *torrent_hash != hash) { tr_logAddTraceHand(handshake, "peer returned the wrong hash. wtf?"); return tr_handshakeDone(handshake, false); } } /** *** If it's an incoming message, we need to send a response handshake **/ if (!handshake->haveSentBitTorrentHandshake) { uint8_t msg[HANDSHAKE_SIZE]; if (!buildHandshakeMessage(handshake, msg)) { return tr_handshakeDone(handshake, false); } tr_peerIoWriteBytes(handshake->io, msg, sizeof(msg), false); handshake->haveSentBitTorrentHandshake = true; } setReadState(handshake, AWAITING_PEER_ID); return READ_NOW; } static ReadState readPeerId(tr_handshake* handshake, struct evbuffer* inbuf) { // read the peer_id auto peer_id = tr_peer_id_t{}; if (evbuffer_get_length(inbuf) < std::size(peer_id)) { return READ_LATER; } tr_peerIoReadBytes(handshake->io, inbuf, std::data(peer_id), std::size(peer_id)); handshake->peer_id = peer_id; char client[128] = {}; tr_clientForId(client, sizeof(client), peer_id); tr_logAddTraceHand(handshake, fmt::format("peer-id is '{}' ... isIncoming is {}", client, handshake->isIncoming())); // if we've somehow connected to ourselves, don't keep the connection auto const hash = handshake->io->torrentHash(); auto const info = hash ? handshake->mediator->torrentInfo(*hash) : std::nullopt; auto const connected_to_self = info && info->client_peer_id == peer_id; return tr_handshakeDone(handshake, !connected_to_self); } static ReadState readYa(tr_handshake* handshake, struct evbuffer* inbuf) { auto peer_public_key = DH::key_bigend_t{}; tr_logAddTraceHand( handshake, fmt::format("in readYa... need {}, have {}", std::size(peer_public_key), evbuffer_get_length(inbuf))); if (evbuffer_get_length(inbuf) < std::size(peer_public_key)) { return READ_LATER; } /* read the incoming peer's public key */ evbuffer_remove(inbuf, std::data(peer_public_key), std::size(peer_public_key)); handshake->dh.setPeerPublicKey(peer_public_key); auto req1 = tr_sha1("req1"sv, handshake->dh.secret()); if (!req1) { tr_logAddTraceHand(handshake, "error while computing req1 hash after Ya"); return tr_handshakeDone(handshake, false); } handshake->myReq1 = *req1; // send our public key to the peer tr_logAddTraceHand(handshake, "sending B->A: Diffie Hellman Yb, PadB"); sendPublicKeyAndPad(handshake); setReadState(handshake, AWAITING_PAD_A); return READ_NOW; } static ReadState readPadA(tr_handshake* handshake, struct evbuffer* inbuf) { /* resynchronizing on HASH('req1', S) */ struct evbuffer_ptr ptr = evbuffer_search( inbuf, reinterpret_cast(std::data(handshake->myReq1)), std::size(handshake->myReq1), nullptr); if (ptr.pos != -1) /* match */ { evbuffer_drain(inbuf, ptr.pos); tr_logAddTraceHand(handshake, "found it... looking setting to awaiting_crypto_provide"); setState(handshake, AWAITING_CRYPTO_PROVIDE); return READ_NOW; } if (size_t const len = evbuffer_get_length(inbuf); len > SHA_DIGEST_LENGTH) { evbuffer_drain(inbuf, len - SHA_DIGEST_LENGTH); } return READ_LATER; } static ReadState readCryptoProvide(tr_handshake* handshake, struct evbuffer* inbuf) { /* HASH('req2', SKEY) xor HASH('req3', S), ENCRYPT(VC, crypto_provide, len(PadC)) */ uint16_t padc_len = 0; uint32_t crypto_provide = 0; size_t const needlen = SHA_DIGEST_LENGTH + /* HASH('req1', s) */ SHA_DIGEST_LENGTH + /* HASH('req2', SKEY) xor HASH('req3', S) */ std::size(VC) + sizeof(crypto_provide) + sizeof(padc_len); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } /* TODO: confirm they sent HASH('req1',S) here? */ evbuffer_drain(inbuf, SHA_DIGEST_LENGTH); /* This next piece is HASH('req2', SKEY) xor HASH('req3', S) ... * we can get the first half of that (the obfuscatedTorrentHash) * by building the latter and xor'ing it with what the peer sent us */ tr_logAddTraceHand(handshake, "reading obfuscated torrent hash..."); auto req2 = tr_sha1_digest_t{}; evbuffer_remove(inbuf, std::data(req2), std::size(req2)); auto const req3 = tr_sha1("req3"sv, handshake->dh.secret()); if (!req3) { tr_logAddTraceHand(handshake, "error while computing req3 hash after req2"); return tr_handshakeDone(handshake, false); } auto obfuscated_hash = tr_sha1_digest_t{}; for (size_t i = 0; i < std::size(obfuscated_hash); ++i) { obfuscated_hash[i] = req2[i] ^ (*req3)[i]; } if (auto const info = handshake->mediator->torrentInfoFromObfuscated(obfuscated_hash); info) { bool const client_is_seed = info->is_done; bool const peer_is_seed = handshake->mediator->isPeerKnownSeed(info->id, handshake->io->address()); tr_logAddTraceHand(handshake, fmt::format("got INCOMING connection's encrypted handshake for torrent [{}]", info->id)); handshake->io->setTorrentHash(info->info_hash); if (client_is_seed && peer_is_seed) { tr_logAddTraceHand(handshake, "another seed tried to reconnect to us!"); return tr_handshakeDone(handshake, false); } } else { tr_logAddTraceHand(handshake, "can't find that torrent..."); return tr_handshakeDone(handshake, false); } /* next part: ENCRYPT(VC, crypto_provide, len(PadC), */ handshake->io->decryptInit(handshake->io->isIncoming(), handshake->dh, *handshake->io->torrentHash()); auto vc_in = vc_t{}; tr_peerIoReadBytes(handshake->io, inbuf, std::data(vc_in), std::size(vc_in)); tr_peerIoReadUint32(handshake->io, inbuf, &crypto_provide); handshake->crypto_provide = crypto_provide; tr_logAddTraceHand(handshake, fmt::format("crypto_provide is {}", crypto_provide)); tr_peerIoReadUint16(handshake->io, inbuf, &padc_len); tr_logAddTraceHand(handshake, fmt::format("padc is {}", padc_len)); handshake->pad_c_len = padc_len; setState(handshake, AWAITING_PAD_C); return READ_NOW; } static ReadState readPadC(tr_handshake* handshake, struct evbuffer* inbuf) { uint16_t ia_len = 0; if (auto const needlen = handshake->pad_c_len + sizeof(uint16_t); evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } /* read the throwaway padc */ auto* const padc = tr_new(char, handshake->pad_c_len); tr_peerIoReadBytes(handshake->io, inbuf, padc, handshake->pad_c_len); tr_free(padc); /* read ia_len */ tr_peerIoReadUint16(handshake->io, inbuf, &ia_len); tr_logAddTraceHand(handshake, fmt::format("ia_len is {}", ia_len)); handshake->ia_len = ia_len; setState(handshake, AWAITING_IA); return READ_NOW; } static ReadState readIA(tr_handshake* handshake, struct evbuffer const* inbuf) { size_t const needlen = handshake->ia_len; tr_logAddTraceHand(handshake, fmt::format("reading IA... have {}, need {}", evbuffer_get_length(inbuf), needlen)); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } /** *** B->A: ENCRYPT(VC, crypto_select, len(padD), padD), ENCRYPT2(Payload Stream) **/ handshake->io->encryptInit(handshake->io->isIncoming(), handshake->dh, *handshake->io->torrentHash()); evbuffer* const outbuf = evbuffer_new(); // send VC tr_logAddTraceHand(handshake, "sending vc"); evbuffer_add(outbuf, std::data(VC), std::size(VC)); /* send crypto_select */ uint32_t const crypto_select = getCryptoSelect(handshake, handshake->crypto_provide); if (crypto_select != 0) { tr_logAddTraceHand(handshake, fmt::format("selecting crypto mode '{}'", crypto_select)); evbuffer_add_uint32(outbuf, crypto_select); } else { tr_logAddTraceHand(handshake, "peer didn't offer an encryption mode we like."); evbuffer_free(outbuf); return tr_handshakeDone(handshake, false); } tr_logAddTraceHand(handshake, "sending pad d"); /* ENCRYPT(VC, crypto_provide, len(PadD), PadD * PadD is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ { uint16_t const len = 0; evbuffer_add_uint16(outbuf, len); } /* maybe de-encrypt our connection */ if (crypto_select == CRYPTO_PROVIDE_PLAINTEXT) { tr_peerIoWriteBuf(handshake->io, outbuf, false); } tr_logAddTraceHand(handshake, "sending handshake"); /* send our handshake */ if (uint8_t msg[HANDSHAKE_SIZE]; buildHandshakeMessage(handshake, msg)) { evbuffer_add(outbuf, msg, sizeof(msg)); handshake->haveSentBitTorrentHandshake = true; } else { return tr_handshakeDone(handshake, false); } /* send it out */ tr_peerIoWriteBuf(handshake->io, outbuf, false); evbuffer_free(outbuf); /* now await the handshake */ setState(handshake, AWAITING_PAYLOAD_STREAM); return READ_NOW; } static ReadState readPayloadStream(tr_handshake* handshake, struct evbuffer* inbuf) { size_t const needlen = HANDSHAKE_SIZE; tr_logAddTraceHand( handshake, fmt::format("reading payload stream... have {}, need {}", evbuffer_get_length(inbuf), needlen)); if (evbuffer_get_length(inbuf) < needlen) { return READ_LATER; } /* parse the handshake ... */ handshake_parse_err_t const i = parseHandshake(handshake, inbuf); tr_logAddTraceHand(handshake, fmt::format("parseHandshake returned {}", i)); if (i != HANDSHAKE_OK) { return tr_handshakeDone(handshake, false); } /* we've completed the BT handshake... pass the work on to peer-msgs */ return tr_handshakeDone(handshake, true); } /*** **** **** **** ***/ static ReadState canRead(tr_peerIo* io, void* vhandshake, size_t* piece) { TR_ASSERT(tr_isPeerIo(io)); auto* handshake = static_cast(vhandshake); evbuffer* const inbuf = io->getReadBuffer(); bool readyForMore = true; /* no piece data in handshake */ *piece = 0; tr_logAddTraceHand(handshake, fmt::format("handling canRead; state is [{}]", getStateName(handshake->state))); ReadState ret = READ_NOW; while (readyForMore) { switch (handshake->state) { case AWAITING_HANDSHAKE: ret = readHandshake(handshake, inbuf); break; case AWAITING_PEER_ID: ret = readPeerId(handshake, inbuf); break; case AWAITING_YA: ret = readYa(handshake, inbuf); break; case AWAITING_PAD_A: ret = readPadA(handshake, inbuf); break; case AWAITING_CRYPTO_PROVIDE: ret = readCryptoProvide(handshake, inbuf); break; case AWAITING_PAD_C: ret = readPadC(handshake, inbuf); break; case AWAITING_IA: ret = readIA(handshake, inbuf); break; case AWAITING_PAYLOAD_STREAM: ret = readPayloadStream(handshake, inbuf); break; case AWAITING_YB: ret = readYb(handshake, inbuf); break; case AWAITING_VC: ret = readVC(handshake, inbuf); break; case AWAITING_CRYPTO_SELECT: ret = readCryptoSelect(handshake, inbuf); break; case AWAITING_PAD_D: ret = readPadD(handshake, inbuf); break; default: #ifdef TR_ENABLE_ASSERTS TR_ASSERT_MSG(false, fmt::format(FMT_STRING("unhandled handshake state {:d}"), handshake->state)); #else ret = READ_ERR; break; #endif } if (ret != READ_NOW) { readyForMore = false; } else if (handshake->state == AWAITING_PAD_C) { readyForMore = evbuffer_get_length(inbuf) >= handshake->pad_c_len; } else if (handshake->state == AWAITING_PAD_D) { readyForMore = evbuffer_get_length(inbuf) >= handshake->pad_d_len; } else if (handshake->state == AWAITING_IA) { readyForMore = evbuffer_get_length(inbuf) >= handshake->ia_len; } } return ret; } static bool fireDoneFunc(tr_handshake* handshake, bool isConnected) { auto result = tr_handshake_result{}; result.handshake = handshake; result.io = handshake->io; result.readAnythingFromPeer = handshake->haveReadAnythingFromPeer; result.isConnected = isConnected; result.userData = handshake->done_func_user_data; result.peer_id = handshake->peer_id; bool const success = (*handshake->done_func)(result); return success; } static ReadState tr_handshakeDone(tr_handshake* handshake, bool isOK) { tr_logAddTraceHand(handshake, isOK ? "handshakeDone: connected" : "handshakeDone: aborting"); tr_peerIoSetIOFuncs(handshake->io, nullptr, nullptr, nullptr, nullptr); bool const success = fireDoneFunc(handshake, isOK); delete handshake; return success ? READ_LATER : READ_ERR; } void tr_handshakeAbort(tr_handshake* handshake) { if (handshake != nullptr) { tr_handshakeDone(handshake, false); } } static void gotError(tr_peerIo* io, short what, void* vhandshake) { int errcode = errno; auto* handshake = static_cast(vhandshake); if (io->socket.type == TR_PEER_SOCKET_TYPE_UTP && !io->isIncoming() && handshake->state == AWAITING_YB) { // the peer probably doesn't speak uTP. auto const hash = io->torrentHash(); auto const info = hash ? handshake->mediator->torrentInfo(*hash) : std::nullopt; /* Don't mark a peer as non-uTP unless it's really a connect failure. */ if ((errcode == ETIMEDOUT || errcode == ECONNREFUSED) && info) { handshake->mediator->setUTPFailed(*hash, io->address()); } if (tr_peerIoReconnect(handshake->io) == 0) { uint8_t msg[HANDSHAKE_SIZE]; buildHandshakeMessage(handshake, msg); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); tr_peerIoWriteBytes(handshake->io, msg, sizeof(msg), false); } } /* if the error happened while we were sending a public key, we might * have encountered a peer that doesn't do encryption... reconnect and * try a plaintext handshake */ if ((handshake->state == AWAITING_YB || handshake->state == AWAITING_VC) && handshake->encryptionMode != TR_ENCRYPTION_REQUIRED && tr_peerIoReconnect(handshake->io) == 0) { uint8_t msg[HANDSHAKE_SIZE]; tr_logAddTraceHand(handshake, "handshake failed, trying plaintext..."); buildHandshakeMessage(handshake, msg); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); tr_peerIoWriteBytes(handshake->io, msg, sizeof(msg), false); } else { tr_logAddTraceHand( handshake, fmt::format("libevent got an error what=={}, errno={} ({})", what, errcode, tr_strerror(errcode))); tr_handshakeDone(handshake, false); } } /** *** **/ static void handshakeTimeout(evutil_socket_t /*s*/, short /*type*/, void* handshake) { tr_handshakeAbort(static_cast(handshake)); } tr_handshake* tr_handshakeNew( std::shared_ptr mediator, tr_peerIo* io, tr_encryption_mode encryptionMode, tr_handshake_done_func done_func, void* done_func_user_data) { auto* const handshake = new tr_handshake{ std::move(mediator) }; handshake->io = io; handshake->encryptionMode = encryptionMode; handshake->done_func = done_func; handshake->done_func_user_data = done_func_user_data; handshake->timeout_timer = evtimer_new(handshake->mediator->eventBase(), handshakeTimeout, handshake); tr_timerAdd(*handshake->timeout_timer, HANDSHAKE_TIMEOUT_SEC, 0); tr_peerIoRef(io); /* balanced by the unref in ~tr_handshake() */ tr_peerIoSetIOFuncs(handshake->io, canRead, nullptr, gotError, handshake); if (handshake->isIncoming()) { setReadState(handshake, AWAITING_HANDSHAKE); } else if (encryptionMode != TR_CLEAR_PREFERRED) { sendYa(handshake); } else { uint8_t msg[HANDSHAKE_SIZE]; buildHandshakeMessage(handshake, msg); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); tr_peerIoWriteBytes(handshake->io, msg, sizeof(msg), false); } return handshake; } tr_peerIo* tr_handshakeStealIO(tr_handshake* handshake) { TR_ASSERT(handshake != nullptr); TR_ASSERT(handshake->io != nullptr); tr_peerIo* io = handshake->io; handshake->io = nullptr; return io; }