// This file Copyright © 2007-2023 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include /* error codes ERANGE, ... */ #include #include /* INT_MAX */ #include #include #include // time_t #include #include #include // std::back_inserter #include #include #include // std::tie #include #include #include #define LIBTRANSMISSION_PEER_MODULE #include "transmission.h" #include "announcer.h" #include "bandwidth.h" #include "blocklist.h" #include "cache.h" #include "clients.h" #include "completion.h" #include "crypto-utils.h" #include "handshake.h" #include "log.h" #include "net.h" #include "peer-io.h" #include "peer-mgr-active-requests.h" #include "peer-mgr-wishlist.h" #include "peer-mgr.h" #include "peer-msgs.h" #include "session.h" #include "timer.h" #include "torrent.h" #include "torrent-magnet.h" #include "tr-assert.h" #include "tr-utp.h" #include "utils.h" #include "webseed.h" using namespace std::literals; // use for bitwise operations w/peer_atom.flags2 static auto constexpr MyflagBanned = int{ 1 }; // use for bitwise operations w/peer_atom.flags2 // unreachable for now... but not banned. // if they try to connect to us it's okay static auto constexpr MyflagUnreachable = int{ 2 }; static auto constexpr CancelHistorySec = int{ 60 }; // --- class HandshakeMediator final : public tr_handshake::Mediator { private: [[nodiscard]] static std::optional torrent(tr_torrent* tor) { if (tor == nullptr) { return {}; } auto info = TorrentInfo{}; info.info_hash = tor->infoHash(); info.client_peer_id = tor->peer_id(); info.id = tor->id(); info.is_done = tor->isDone(); return info; } public: explicit HandshakeMediator(tr_session& session) noexcept : session_{ session } { } [[nodiscard]] std::optional torrent(tr_sha1_digest_t const& info_hash) const override { return torrent(session_.torrents().get(info_hash)); } [[nodiscard]] std::optional torrent_from_obfuscated(tr_sha1_digest_t const& info_hash) const override { return torrent(tr_torrentFindFromObfuscatedHash(&session_, info_hash)); } [[nodiscard]] bool allows_dht() const override { return session_.allowsDHT(); } [[nodiscard]] bool allows_tcp() const override { return session_.allowsTCP(); } void set_utp_failed(tr_sha1_digest_t const& info_hash, tr_address const& addr) override { if (auto* const tor = session_.torrents().get(info_hash); tor != nullptr) { tr_peerMgrSetUtpFailed(tor, addr, true); } } [[nodiscard]] bool is_peer_known_seed(tr_torrent_id_t tor_id, tr_address const& addr) const override; [[nodiscard]] libtransmission::TimerMaker& timer_maker() override { return session_.timerMaker(); } [[nodiscard]] size_t pad(void* setme, size_t maxlen) const override { auto const len = tr_rand_int(maxlen); tr_rand_buffer(setme, len); return len; } private: tr_session& session_; }; /** * Peer information that should be kept even before we've connected and * after we've disconnected. These are kept in a pool of peer_atoms to decide * which ones would make good candidates for connecting to, and to watch out * for banned peers. * * @see tr_peer * @see tr_peerMsgs */ struct peer_atom { peer_atom(tr_address addr_in, tr_port port_in, uint8_t flags_in, uint8_t from) : addr{ addr_in } , port{ port_in } , fromFirst{ from } , fromBest{ from } , flags{ flags_in } { ++n_atoms; } peer_atom(peer_atom&&) = delete; peer_atom(peer_atom const&) = delete; peer_atom& operator=(peer_atom&&) = delete; peer_atom& operator=(peer_atom const&) = delete; ~peer_atom() { [[maybe_unused]] auto const n_prev = n_atoms--; TR_ASSERT(n_prev > 0U); } [[nodiscard]] static auto atom_count() noexcept { return n_atoms.load(); } [[nodiscard]] constexpr auto isSeed() const noexcept { return (flags & ADDED_F_SEED_FLAG) != 0; } [[nodiscard]] auto display_name() const { return addr.display_name(port); } [[nodiscard]] bool isBlocklisted(tr_session const* session) const { if (blocklisted_) { return *blocklisted_; } auto const value = session->addressIsBlocked(addr); blocklisted_ = value; return value; } [[nodiscard]] constexpr int getReconnectIntervalSecs(time_t const now) const noexcept { auto sec = int{}; bool const unreachable = (this->flags2 & MyflagUnreachable) != 0; /* if we were recently connected to this peer and transferring piece * data, try to reconnect to them sooner rather that later -- we don't * want network troubles to get in the way of a good peer. */ if (!unreachable && now - this->piece_data_time <= MinimumReconnectIntervalSecs * 2) { sec = MinimumReconnectIntervalSecs; } /* otherwise, the interval depends on how many times we've tried * and failed to connect to the peer */ else { auto step = this->num_fails; /* penalize peers that were unreachable the last time we tried */ if (unreachable) { step += 2; } switch (step) { case 0: sec = 0; break; case 1: sec = 10; break; case 2: sec = 60 * 2; break; case 3: sec = 60 * 15; break; case 4: sec = 60 * 30; break; case 5: sec = 60 * 60; break; default: sec = 60 * 120; break; } } return sec; } void setBlocklistedDirty() { blocklisted_.reset(); } [[nodiscard]] constexpr std::optional isReachable() const { if ((flags2 & MyflagUnreachable) != 0) { return false; } if ((flags & ADDED_F_CONNECTABLE) != 0) { return true; } return std::nullopt; } tr_address const addr; tr_port port = {}; uint16_t num_fails = {}; time_t time = {}; /* when the peer's connection status last changed */ time_t piece_data_time = {}; time_t lastConnectionAttemptAt = {}; time_t lastConnectionAt = {}; uint8_t const fromFirst; /* where the peer was first found */ uint8_t fromBest; /* the "best" value of where the peer has been found */ uint8_t flags = {}; /* these match the added_f flags */ uint8_t flags2 = {}; /* flags that aren't defined in added_f */ bool utp_failed = false; /* We recently failed to connect over µTP */ bool is_connected = false; private: mutable std::optional blocklisted_; // the minimum we'll wait before attempting to reconnect to a peer static auto constexpr MinimumReconnectIntervalSecs = int{ 5 }; static auto inline n_atoms = std::atomic{}; }; using Handshakes = std::map; #define tr_logAddDebugSwarm(swarm, msg) tr_logAddDebugTor((swarm)->tor, msg) #define tr_logAddTraceSwarm(swarm, msg) tr_logAddTraceTor((swarm)->tor, msg) /** @brief Opaque, per-torrent data structure for peer connection information */ class tr_swarm { public: [[nodiscard]] auto unique_lock() const { return tor->unique_lock(); } tr_swarm(tr_peerMgr* manager_in, tr_torrent* tor_in) noexcept : manager{ manager_in } , tor{ tor_in } { rebuildWebseeds(); } tr_swarm(tr_swarm&&) = delete; tr_swarm(tr_swarm const&) = delete; tr_swarm& operator=(tr_swarm&&) = delete; tr_swarm& operator=(tr_swarm const&) = delete; ~tr_swarm() { auto const lock = unique_lock(); TR_ASSERT(!is_running); TR_ASSERT(std::empty(outgoing_handshakes)); TR_ASSERT(std::empty(peers)); } [[nodiscard]] bool peer_is_in_use(peer_atom const& atom) const; void cancelOldRequests() { auto const now = tr_time(); auto const oldest = now - RequestTtlSecs; for (auto const& [block, peer] : active_requests.sentBefore(oldest)) { maybeSendCancelRequest(peer, block, nullptr); active_requests.remove(block, peer); } } void cancelAllRequestsForBlock(tr_block_index_t block, tr_peer const* no_notify) { for (auto* peer : active_requests.remove(block)) { maybeSendCancelRequest(peer, block, no_notify); } } [[nodiscard]] uint16_t countActiveWebseeds(uint64_t now) const noexcept { if (!tor->isRunning || tor->isDone()) { return {}; } return std::count_if( std::begin(webseeds), std::end(webseeds), [&now](auto const& webseed) { return webseed->isTransferringPieces(now, TR_DOWN, nullptr); }); } [[nodiscard]] auto peerCount() const noexcept { return std::size(peers); } void stop() { auto const lock = unique_lock(); is_running = false; removeAllPeers(); outgoing_handshakes.clear(); } void removePeer(tr_peer* peer) { auto const lock = unique_lock(); auto* const atom = peer->atom; TR_ASSERT(atom != nullptr); atom->time = tr_time(); if (auto iter = std::find(std::begin(peers), std::end(peers), peer); iter != std::end(peers)) { peers.erase(iter); } --stats.peer_count; --stats.peer_from_count[atom->fromFirst]; TR_ASSERT(stats.peer_count == peerCount()); delete peer; } void removeAllPeers() { auto tmp = peers; for (auto* peer : tmp) { removePeer(peer); } TR_ASSERT(stats.peer_count == 0); } void updateEndgame() { /* we consider ourselves to be in endgame if the number of bytes we've got requested is >= the number of bytes left to download */ is_endgame_ = uint64_t(std::size(active_requests)) * tr_block_info::BlockSize >= tor->leftUntilDone(); } [[nodiscard]] constexpr auto isEndgame() const noexcept { return is_endgame_; } void addStrike(tr_peer* peer) const { tr_logAddTraceSwarm( this, fmt::format("increasing peer {} strike count to {}", peer->display_name(), peer->strikes + 1)); if (++peer->strikes >= MaxBadPiecesPerPeer) { peer->atom->flags2 |= MyflagBanned; peer->do_purge = true; tr_logAddTraceSwarm(this, fmt::format("banning peer {}", peer->display_name())); } } void rebuildWebseeds() { auto const n = tor->webseedCount(); webseeds.clear(); webseeds.reserve(n); for (size_t i = 0; i < n; ++i) { webseeds.emplace_back(tr_webseedNew(tor, tor->webseed(i), &tr_swarm::peerCallbackFunc, this)); } webseeds.shrink_to_fit(); stats.active_webseed_count = 0; } [[nodiscard]] TR_CONSTEXPR20 auto isAllSeeds() const noexcept { if (!pool_is_all_seeds_) { pool_is_all_seeds_ = std::all_of(std::begin(pool), std::end(pool), [](auto const& atom) { return atom.isSeed(); }); } return *pool_is_all_seeds_; } void markAllSeedsFlagDirty() noexcept { pool_is_all_seeds_.reset(); } [[nodiscard]] peer_atom* get_existing_atom(tr_address const& addr) noexcept { auto const iter = std::find_if( std::begin(pool), std::end(pool), [&addr](auto const& atom) { return atom.addr == addr; }); return iter != std::end(pool) ? &*iter : nullptr; } [[nodiscard]] peer_atom const* get_existing_atom(tr_address const& addr) const noexcept { auto const iter = std::find_if( std::begin(pool), std::end(pool), [&addr](auto const& atom) { return atom.addr == addr; }); return iter != std::end(pool) ? &*iter : nullptr; } [[nodiscard]] bool peer_is_a_seed(tr_address const& addr) const noexcept { auto const* const atom = get_existing_atom(addr); return atom != nullptr && atom->isSeed(); } peer_atom* ensure_atom_exists(tr_address const& addr, tr_port const port, uint8_t const flags, uint8_t const from) { TR_ASSERT(addr.is_valid()); TR_ASSERT(from < TR_PEER_FROM__MAX); peer_atom* atom = get_existing_atom(addr); if (atom == nullptr) { atom = &pool.emplace_back(addr, port, flags, from); } else { atom->fromBest = std::min(atom->fromBest, from); atom->flags |= flags; } markAllSeedsFlagDirty(); return atom; } void mark_atom_as_seed(peer_atom& atom) { tr_logAddTraceSwarm(this, fmt::format("marking peer {} as a seed", atom.display_name())); atom.flags |= ADDED_F_SEED_FLAG; markAllSeedsFlagDirty(); } static void peerCallbackFunc(tr_peer* peer, tr_peer_event const& event, void* vs) { TR_ASSERT(peer != nullptr); auto* s = static_cast(vs); auto const lock = s->unique_lock(); switch (event.type) { case tr_peer_event::Type::ClientSentPieceData: { auto const now = tr_time(); auto* const tor = s->tor; tor->uploadedCur += event.length; tr_announcerAddBytes(tor, TR_ANN_UP, event.length); tor->setDateActive(now); tor->setDirty(); tor->session->addUploaded(event.length); if (peer->atom != nullptr) { peer->atom->piece_data_time = now; } break; } case tr_peer_event::Type::ClientGotPieceData: { auto const now = tr_time(); auto* const tor = s->tor; tor->downloadedCur += event.length; tor->setDateActive(now); tor->setDirty(); tor->session->addDownloaded(event.length); if (peer->atom != nullptr) { peer->atom->piece_data_time = now; } break; } case tr_peer_event::Type::ClientGotHave: case tr_peer_event::Type::ClientGotHaveAll: case tr_peer_event::Type::ClientGotHaveNone: case tr_peer_event::Type::ClientGotBitfield: /* TODO: if we don't need these, should these events be removed? */ /* noop */ break; case tr_peer_event::Type::ClientGotRej: s->active_requests.remove(s->tor->pieceLoc(event.pieceIndex, event.offset).block, peer); break; case tr_peer_event::Type::ClientGotChoke: s->active_requests.remove(peer); break; case tr_peer_event::Type::ClientGotPort: if (peer->atom != nullptr) { peer->atom->port = event.port; } break; case tr_peer_event::Type::ClientGotSuggest: case tr_peer_event::Type::ClientGotAllowedFast: // not currently supported break; case tr_peer_event::Type::ClientGotBlock: { auto* const tor = s->tor; auto const loc = tor->pieceLoc(event.pieceIndex, event.offset); s->cancelAllRequestsForBlock(loc.block, peer); peer->blocks_sent_to_client.add(tr_time(), 1); tr_torrentGotBlock(tor, loc.block); break; } case tr_peer_event::Type::Error: if (event.err == ERANGE || event.err == EMSGSIZE || event.err == ENOTCONN) { /* some protocol error from the peer */ peer->do_purge = true; tr_logAddDebugSwarm( s, fmt::format( "setting {} do_purge flag because we got an ERANGE, EMSGSIZE, or ENOTCONN error", peer->display_name())); } else { tr_logAddDebugSwarm(s, fmt::format("unhandled error: {}", tr_strerror(event.err))); } break; } } Handshakes outgoing_handshakes; mutable tr_swarm_stats stats = {}; uint8_t optimistic_unchoke_time_scaler = 0; bool is_running = false; tr_peerMgr* const manager; tr_torrent* const tor; ActiveRequests active_requests; // depends-on: active_requests std::vector> webseeds; // depends-on: active_requests std::vector peers; // tr_peers hold pointers to the items in this container, // so use a deque instead of vector to prevent insertion from // invalidating those pointers std::deque pool; tr_peerMsgs* optimistic = nullptr; /* the optimistic peer, or nullptr if none */ time_t lastCancel = 0; private: static void maybeSendCancelRequest(tr_peer* peer, tr_block_index_t block, tr_peer const* muted) { auto* msgs = dynamic_cast(peer); if (msgs != nullptr && msgs != muted) { peer->cancels_sent_to_peer.add(tr_time(), 1); msgs->cancel_block_request(block); } } // number of bad pieces a peer is allowed to send before we ban them static auto constexpr MaxBadPiecesPerPeer = int{ 5 }; // how long we'll let requests we've made linger before we cancel them static auto constexpr RequestTtlSecs = int{ 90 }; mutable std::optional pool_is_all_seeds_; bool is_endgame_ = false; }; struct tr_peerMgr { explicit tr_peerMgr(tr_session* session_in) : session{ session_in } , handshake_mediator_{ *session } , bandwidth_timer_{ session->timerMaker().create([this]() { bandwidthPulse(); }) } , rechoke_timer_{ session->timerMaker().create([this]() { rechokePulseMarshall(); }) } , refill_upkeep_timer_{ session->timerMaker().create([this]() { refillUpkeep(); }) } { bandwidth_timer_->startRepeating(BandwidthPeriod); rechoke_timer_->startRepeating(RechokePeriod); refill_upkeep_timer_->startRepeating(RefillUpkeepPeriod); } tr_peerMgr(tr_peerMgr&&) = delete; tr_peerMgr(tr_peerMgr const&) = delete; tr_peerMgr& operator=(tr_peerMgr&&) = delete; tr_peerMgr& operator=(tr_peerMgr const&) = delete; [[nodiscard]] auto unique_lock() const { return session->unique_lock(); } ~tr_peerMgr() { auto const lock = unique_lock(); incoming_handshakes.clear(); } void rechokeSoon() noexcept { rechoke_timer_->setInterval(100ms); } void bandwidthPulse(); void rechokePulse() const; void reconnectPulse(); void refillUpkeep() const; void makeNewPeerConnections(size_t max); [[nodiscard]] tr_swarm* get_existing_swarm(tr_sha1_digest_t const& hash) const { auto* const tor = session->torrents().get(hash); return tor == nullptr ? nullptr : tor->swarm; } tr_session* const session; Handshakes incoming_handshakes; HandshakeMediator handshake_mediator_; private: void rechokePulseMarshall() { rechokePulse(); rechoke_timer_->setInterval(RechokePeriod); } std::unique_ptr const bandwidth_timer_; std::unique_ptr const rechoke_timer_; std::unique_ptr const refill_upkeep_timer_; static auto constexpr BandwidthPeriod = 500ms; static auto constexpr RechokePeriod = 10s; static auto constexpr RefillUpkeepPeriod = 10s; // how frequently to decide which peers live and die static auto constexpr ReconnectPeriodMsec = int{ 500 }; // max number of peers to ask for per second overall. // this throttle is to avoid overloading the router static auto constexpr MaxConnectionsPerSecond = size_t{ 12 }; }; // --- tr_peer virtual functions tr_peer::tr_peer(tr_torrent const* tor, peer_atom* atom_in) : session{ tor->session } , swarm{ tor->swarm } , atom{ atom_in } , blame{ tor->blockCount() } { } tr_peer::~tr_peer() { if (swarm != nullptr) { swarm->active_requests.remove(this); } if (atom != nullptr) { atom->is_connected = false; } } // --- tr_peerMgr* tr_peerMgrNew(tr_session* session) { return new tr_peerMgr{ session }; } void tr_peerMgrFree(tr_peerMgr* manager) { delete manager; } // --- void tr_peerMgrOnBlocklistChanged(tr_peerMgr* mgr) { /* we cache whether or not a peer is blocklisted... since the blocklist has changed, erase that cached value */ for (auto* const tor : mgr->session->torrents()) { for (auto& atom : tor->swarm->pool) { atom.setBlocklistedDirty(); } } } // --- void tr_peerMgrSetUtpSupported(tr_torrent* tor, tr_address const& addr) { if (auto* const atom = tor->swarm->get_existing_atom(addr); atom != nullptr) { atom->flags |= ADDED_F_UTP_FLAGS; } } void tr_peerMgrSetUtpFailed(tr_torrent* tor, tr_address const& addr, bool failed) { if (auto* const atom = tor->swarm->get_existing_atom(addr); atom != nullptr) { atom->utp_failed = failed; } } /** * REQUESTS * * There are two data structures associated with managing block requests: * * 1. tr_swarm::active_requests, an opaque class that tracks what requests * we currently have, i.e. which blocks and from which peers. * This is used for cancelling requests that have been waiting * for too long and avoiding duplicate requests. * * 2. tr_swarm::pieces, an array of "struct weighted_piece" which lists the * pieces that we want to request. It's used to decide which blocks to * return next when tr_peerMgrGetBlockRequests() is called. */ // --- struct block_request // TODO: if we keep this, add equivalent API to ActiveRequest void tr_peerMgrClientSentRequests(tr_torrent* torrent, tr_peer* peer, tr_block_span_t span) { auto const now = tr_time(); for (tr_block_index_t block = span.begin; block < span.end; ++block) { torrent->swarm->active_requests.add(block, peer, now); } } std::vector tr_peerMgrGetNextRequests(tr_torrent* torrent, tr_peer const* peer, size_t numwant) { class MediatorImpl final : public Wishlist::Mediator { public: MediatorImpl(tr_torrent const* torrent_in, tr_peer const* peer_in) : torrent_{ torrent_in } , swarm_{ torrent_in->swarm } , peer_{ peer_in } { } MediatorImpl(MediatorImpl&&) = delete; MediatorImpl(MediatorImpl const&) = delete; MediatorImpl& operator=(MediatorImpl&&) = delete; MediatorImpl& operator=(MediatorImpl const&) = delete; ~MediatorImpl() override = default; [[nodiscard]] bool clientCanRequestBlock(tr_block_index_t block) const override { return !torrent_->hasBlock(block) && !swarm_->active_requests.has(block, peer_); } [[nodiscard]] bool clientCanRequestPiece(tr_piece_index_t piece) const override { return torrent_->pieceIsWanted(piece) && peer_->hasPiece(piece); } [[nodiscard]] bool isEndgame() const override { return swarm_->isEndgame(); } [[nodiscard]] size_t countActiveRequests(tr_block_index_t block) const override { return swarm_->active_requests.count(block); } [[nodiscard]] size_t countMissingBlocks(tr_piece_index_t piece) const override { return torrent_->countMissingBlocksInPiece(piece); } [[nodiscard]] tr_block_span_t blockSpan(tr_piece_index_t piece) const override { return torrent_->blockSpanForPiece(piece); } [[nodiscard]] tr_piece_index_t countAllPieces() const override { return torrent_->pieceCount(); } [[nodiscard]] tr_priority_t priority(tr_piece_index_t piece) const override { return torrent_->piecePriority(piece); } private: tr_torrent const* const torrent_; tr_swarm const* const swarm_; tr_peer const* const peer_; }; torrent->swarm->updateEndgame(); auto const mediator = MediatorImpl{ torrent, peer }; return Wishlist{ mediator }.next(numwant); } // --- Piece List Manipulation / Accessors bool tr_peerMgrDidPeerRequest(tr_torrent const* tor, tr_peer const* peer, tr_block_index_t block) { return tor->swarm->active_requests.has(block, peer); } size_t tr_peerMgrCountActiveRequestsToPeer(tr_torrent const* tor, tr_peer const* peer) { return tor->swarm->active_requests.count(peer); } void tr_peerMgr::refillUpkeep() const { auto const lock = unique_lock(); for (auto* const tor : session->torrents()) { tor->swarm->cancelOldRequests(); } } void tr_peerMgrPieceCompleted(tr_torrent* tor, tr_piece_index_t p) { bool piece_came_from_peers = false; for (auto* const peer : tor->swarm->peers) { // notify the peer that we now have this piece peer->on_piece_completed(p); if (!piece_came_from_peers) { piece_came_from_peers = peer->blame.test(p); } } if (piece_came_from_peers) /* webseed downloads don't belong in announce totals */ { tr_announcerAddBytes(tor, TR_ANN_DOWN, tor->pieceSize(p)); } // bookkeeping tor->set_needs_completeness_check(); } namespace { namespace handshake_helpers { void create_bit_torrent_peer(tr_torrent* tor, std::shared_ptr io, struct peer_atom* atom, tr_quark client) { TR_ASSERT(atom != nullptr); TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm != nullptr); tr_swarm* swarm = tor->swarm; auto* peer = tr_peerMsgsNew(tor, atom, std::move(io), &tr_swarm::peerCallbackFunc, swarm); peer->client = client; atom->is_connected = true; swarm->peers.push_back(peer); ++swarm->stats.peer_count; ++swarm->stats.peer_from_count[atom->fromFirst]; TR_ASSERT(swarm->stats.peer_count == swarm->peerCount()); TR_ASSERT(swarm->stats.peer_from_count[atom->fromFirst] <= swarm->stats.peer_count); // TODO is this needed? // isn't it already initialized in tr_peerMsgsImpl's ctor? peer->update_active(TR_UP); peer->update_active(TR_DOWN); } /* FIXME: this is kind of a mess. */ [[nodiscard]] bool on_handshake_done(tr_peerMgr* manager, tr_handshake::Result const& result) { TR_ASSERT(result.io != nullptr); bool const ok = result.is_connected; bool success = false; auto* const s = manager->get_existing_swarm(result.io->torrent_hash()); auto const [addr, port] = result.io->socket_address(); if (result.io->is_incoming()) { manager->incoming_handshakes.erase(addr); } else if (s != nullptr) { s->outgoing_handshakes.erase(addr); } auto const lock = manager->unique_lock(); if (!ok || s == nullptr || !s->is_running) { if (s != nullptr) { struct peer_atom* atom = s->get_existing_atom(addr); if (atom != nullptr) { ++atom->num_fails; if (!result.read_anything_from_peer) { tr_logAddTraceSwarm( s, fmt::format( "marking peer {} as unreachable... num_fails is {}", atom->display_name(), atom->num_fails)); atom->flags2 |= MyflagUnreachable; } } } } else /* looking good */ { struct peer_atom* atom = s->ensure_atom_exists(addr, port, 0, TR_PEER_FROM_INCOMING); atom->time = tr_time(); atom->piece_data_time = 0; atom->lastConnectionAt = tr_time(); if (!result.io->is_incoming()) { atom->flags |= ADDED_F_CONNECTABLE; atom->flags2 &= ~MyflagUnreachable; } /* In principle, this flag specifies whether the peer groks µTP, not whether it's currently connected over µTP. */ if (result.io->is_utp()) { atom->flags |= ADDED_F_UTP_FLAGS; } if ((atom->flags2 & MyflagBanned) != 0) { tr_logAddTraceSwarm(s, fmt::format("banned peer {} tried to reconnect", atom->display_name())); } else if (result.io->is_incoming() && s->peerCount() >= s->tor->peerLimit()) { /* too many peers already */ } else if (atom->is_connected) { // we're already connected to this peer; do nothing } else { auto client = tr_quark{ TR_KEY_NONE }; if (result.peer_id) { auto buf = std::array{}; tr_clientForId(std::data(buf), sizeof(buf), *result.peer_id); client = tr_quark_new(std::data(buf)); } result.io->set_bandwidth(&s->tor->bandwidth_); create_bit_torrent_peer(s->tor, result.io, atom, client); success = true; } } return success; } } // namespace handshake_helpers } // namespace void tr_peerMgrAddIncoming(tr_peerMgr* manager, tr_peer_socket&& socket) { using namespace handshake_helpers; TR_ASSERT(manager->session != nullptr); auto const lock = manager->unique_lock(); tr_session* session = manager->session; if (session->addressIsBlocked(socket.address())) { tr_logAddTrace(fmt::format("Banned IP address '{}' tried to connect to us", socket.display_name())); socket.close(); } else if (manager->incoming_handshakes.count(socket.address()) != 0U) { socket.close(); } else /* we don't have a connection to them yet... */ { auto address = socket.address(); manager->incoming_handshakes.try_emplace( address, &manager->handshake_mediator_, tr_peerIo::new_incoming(session, &session->top_bandwidth_, std::move(socket)), session->encryptionMode(), [manager](tr_handshake::Result const& result) { return on_handshake_done(manager, result); }); } } void tr_peerMgrSetSwarmIsAllSeeds(tr_torrent* tor) { auto const lock = tor->unique_lock(); auto* const swarm = tor->swarm; for (auto& atom : swarm->pool) { swarm->mark_atom_as_seed(atom); } swarm->markAllSeedsFlagDirty(); } size_t tr_peerMgrAddPex(tr_torrent* tor, uint8_t from, tr_pex const* pex, size_t n_pex) { size_t n_used = 0; tr_swarm* s = tor->swarm; auto const lock = s->manager->unique_lock(); for (tr_pex const* const end = pex + n_pex; pex != end; ++pex) { if (tr_isPex(pex) && /* safeguard against corrupt data */ !s->manager->session->addressIsBlocked(pex->addr) && pex->is_valid_for_peers()) { s->ensure_atom_exists(pex->addr, pex->port, pex->flags, from); ++n_used; } } return n_used; } std::vector tr_pex::from_compact_ipv4( void const* compact, size_t compact_len, uint8_t const* added_f, size_t added_f_len) { size_t const n = compact_len / 6; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { std::tie(pex[i].addr, walk) = tr_address::from_compact_ipv4(walk); std::tie(pex[i].port, walk) = tr_port::fromCompact(walk); if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } std::vector tr_pex::from_compact_ipv6( void const* compact, size_t compact_len, uint8_t const* added_f, size_t added_f_len) { size_t const n = compact_len / 18; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { std::tie(pex[i].addr, walk) = tr_address::from_compact_ipv6(walk); std::tie(pex[i].port, walk) = tr_port::fromCompact(walk); if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } // --- void tr_peerMgrGotBadPiece(tr_torrent* tor, tr_piece_index_t piece_index) { auto* const swarm = tor->swarm; auto const byte_count = tor->pieceSize(piece_index); for (auto* const peer : swarm->peers) { if (peer->blame.test(piece_index)) { tr_logAddTraceSwarm( swarm, fmt::format( "peer {} contributed to corrupt piece ({}); now has {} strikes", peer->display_name(), piece_index, peer->strikes + 1)); swarm->addStrike(peer); } } tr_announcerAddBytes(tor, TR_ANN_CORRUPT, byte_count); } namespace { namespace get_peers_helpers { /* better goes first */ struct CompareAtomsByUsefulness { [[nodiscard]] constexpr static int compare(peer_atom const& a, peer_atom const& b) noexcept // <=> { if (a.piece_data_time != b.piece_data_time) { return a.piece_data_time > b.piece_data_time ? -1 : 1; } if (a.fromBest != b.fromBest) { return a.fromBest < b.fromBest ? -1 : 1; } if (a.num_fails != b.num_fails) { return a.num_fails < b.num_fails ? -1 : 1; } return 0; } [[nodiscard]] constexpr bool operator()(peer_atom const& a, peer_atom const& b) const noexcept { return compare(a, b) < 0; } [[nodiscard]] constexpr bool operator()(peer_atom const* a, peer_atom const* b) const noexcept { return compare(*a, *b) < 0; } }; [[nodiscard]] bool isAtomInteresting(tr_torrent const* tor, peer_atom const& atom) { if (tor->isDone() && atom.isSeed()) { return false; } if (tor->swarm->peer_is_in_use(atom)) { return true; } if (atom.isBlocklisted(tor->session)) { return false; } if ((atom.flags2 & MyflagBanned) != 0) { return false; } return true; } } // namespace get_peers_helpers } // namespace std::vector tr_peerMgrGetPeers(tr_torrent const* tor, uint8_t address_type, uint8_t list_mode, size_t max_peer_count) { using namespace get_peers_helpers; TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(address_type == TR_AF_INET || address_type == TR_AF_INET6); TR_ASSERT(list_mode == TR_PEERS_CONNECTED || list_mode == TR_PEERS_INTERESTING); tr_swarm const* s = tor->swarm; // build a list of atoms auto atoms = std::vector{}; if (list_mode == TR_PEERS_CONNECTED) /* connected peers only */ { atoms.reserve(s->peerCount()); std::transform( std::begin(s->peers), std::end(s->peers), std::back_inserter(atoms), [](auto const* peer) { return peer->atom; }); } else /* TR_PEERS_INTERESTING */ { for (auto const& atom : s->pool) { if (isAtomInteresting(tor, atom)) { atoms.push_back(&atom); } } } std::sort(std::begin(atoms), std::end(atoms), CompareAtomsByUsefulness{}); // add the first N of them into our return list auto const n = std::min(std::size(atoms), max_peer_count); auto pex = std::vector{}; pex.reserve(n); for (size_t i = 0; i < std::size(atoms) && std::size(pex) < n; ++i) { auto const* const atom = atoms[i]; if (atom->addr.type == address_type) { TR_ASSERT(atom->addr.is_valid()); pex.emplace_back(atom->addr, atom->port, atom->flags); } } std::sort(std::begin(pex), std::end(pex)); return pex; } void tr_peerMgrStartTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); tr_swarm* const swarm = tor->swarm; swarm->is_running = true; swarm->manager->rechokeSoon(); } void tr_peerMgrStopTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); tor->swarm->stop(); } void tr_peerMgrAddTorrent(tr_peerMgr* manager, tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(tor->swarm == nullptr); tor->swarm = new tr_swarm{ manager, tor }; } void tr_peerMgrRemoveTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); tor->swarm->stop(); delete tor->swarm; tor->swarm = nullptr; } void tr_peerMgrOnTorrentGotMetainfo(tr_torrent* tor) { auto* const swarm = tor->swarm; /* the webseed list may have changed... */ swarm->rebuildWebseeds(); /* some peer_msgs' progress fields may not be accurate if we didn't have the metadata before now... so refresh them all... */ for (auto* peer : swarm->peers) { peer->onTorrentGotMetainfo(); if (peer->isSeed()) { swarm->mark_atom_as_seed(*peer->atom); } } /* update the bittorrent peers' willingness... */ for (auto* peer : swarm->peers) { peer->update_active(TR_UP); peer->update_active(TR_DOWN); } } int8_t tr_peerMgrPieceAvailability(tr_torrent const* tor, tr_piece_index_t piece) { if (!tor->hasMetainfo()) { return 0; } if (tor->isSeed() || tor->hasPiece(piece)) { return -1; } auto const& peers = tor->swarm->peers; return std::count_if(std::begin(peers), std::end(peers), [piece](auto const* peer) { return peer->hasPiece(piece); }); } void tr_peerMgrTorrentAvailability(tr_torrent const* tor, int8_t* tab, unsigned int n_tabs) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tab != nullptr); TR_ASSERT(n_tabs > 0); std::fill_n(tab, n_tabs, int8_t{}); auto const interval = tor->pieceCount() / static_cast(n_tabs); for (tr_piece_index_t i = 0; i < n_tabs; ++i) { auto const piece = static_cast(i * interval); tab[i] = tr_peerMgrPieceAvailability(tor, piece); } } tr_swarm_stats tr_swarmGetStats(tr_swarm const* swarm) { TR_ASSERT(swarm != nullptr); auto& stats = swarm->stats; stats.active_webseed_count = swarm->countActiveWebseeds(tr_time_msec()); return stats; } void tr_swarmIncrementActivePeers(tr_swarm* swarm, tr_direction direction, bool is_active) { int n = swarm->stats.active_peer_count[direction]; if (is_active) { ++n; } else { --n; } TR_ASSERT(n >= 0); TR_ASSERT(n <= swarm->stats.peer_count); swarm->stats.active_peer_count[direction] = n; } /* count how many bytes we want that connected peers have */ uint64_t tr_peerMgrGetDesiredAvailable(tr_torrent const* tor) { TR_ASSERT(tr_isTorrent(tor)); // common shortcuts... if (!tor->isRunning || tor->isStopping || tor->isDone() || !tor->hasMetainfo()) { return 0; } tr_swarm const* const swarm = tor->swarm; if (swarm == nullptr || swarm->peerCount() == 0U) { return 0; } auto available = swarm->peers.front()->has(); for (auto const* const peer : swarm->peers) { available |= peer->has(); } if (available.hasAll()) { return tor->leftUntilDone(); } auto desired_available = uint64_t{}; for (tr_piece_index_t i = 0, n = tor->pieceCount(); i < n; ++i) { if (tor->pieceIsWanted(i) && available.test(i)) { desired_available += tor->countMissingBytesInPiece(i); } } TR_ASSERT(desired_available <= tor->totalSize()); return desired_available; } tr_webseed_view tr_peerMgrWebseed(tr_torrent const* tor, size_t i) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm != nullptr); size_t const n = std::size(tor->swarm->webseeds); TR_ASSERT(i < n); return i >= n ? tr_webseed_view{} : tr_webseedView(tor->swarm->webseeds[i].get()); } namespace { namespace peer_stat_helpers { [[nodiscard]] auto getPeerStats(tr_peerMsgs const* peer, time_t now, uint64_t now_msec) { auto stats = tr_peer_stat{}; auto const* const atom = peer->atom; auto const [addr, port] = peer->socketAddress(); addr.display_name(stats.addr, sizeof(stats.addr)); stats.client = peer->client.c_str(); stats.port = port.host(); stats.from = atom->fromFirst; stats.progress = peer->percentDone(); stats.isUTP = peer->is_utp_connection(); stats.isEncrypted = peer->is_encrypted(); stats.rateToPeer_KBps = tr_toSpeedKBps(peer->get_piece_speed_bytes_per_second(now_msec, TR_CLIENT_TO_PEER)); stats.rateToClient_KBps = tr_toSpeedKBps(peer->get_piece_speed_bytes_per_second(now_msec, TR_PEER_TO_CLIENT)); stats.peerIsChoked = peer->is_peer_choked(); stats.peerIsInterested = peer->is_peer_interested(); stats.clientIsChoked = peer->is_client_choked(); stats.clientIsInterested = peer->is_client_interested(); stats.isIncoming = peer->is_incoming_connection(); stats.isDownloadingFrom = peer->is_active(TR_PEER_TO_CLIENT); stats.isUploadingTo = peer->is_active(TR_CLIENT_TO_PEER); stats.isSeed = peer->isSeed(); stats.blocksToPeer = peer->blocks_sent_to_peer.count(now, CancelHistorySec); stats.blocksToClient = peer->blocks_sent_to_client.count(now, CancelHistorySec); stats.cancelsToPeer = peer->cancels_sent_to_peer.count(now, CancelHistorySec); stats.cancelsToClient = peer->cancels_sent_to_client.count(now, CancelHistorySec); stats.activeReqsToPeer = peer->activeReqCount(TR_CLIENT_TO_PEER); stats.activeReqsToClient = peer->activeReqCount(TR_PEER_TO_CLIENT); char* pch = stats.flagStr; if (stats.isUTP) { *pch++ = 'T'; } if (peer->swarm->optimistic == peer) { *pch++ = 'O'; } if (stats.isDownloadingFrom) { *pch++ = 'D'; } else if (stats.clientIsInterested) { *pch++ = 'd'; } if (stats.isUploadingTo) { *pch++ = 'U'; } else if (stats.peerIsInterested) { *pch++ = 'u'; } if (!stats.clientIsChoked && !stats.clientIsInterested) { *pch++ = 'K'; } if (!stats.peerIsChoked && !stats.peerIsInterested) { *pch++ = '?'; } if (stats.isEncrypted) { *pch++ = 'E'; } if (stats.from == TR_PEER_FROM_DHT) { *pch++ = 'H'; } else if (stats.from == TR_PEER_FROM_PEX) { *pch++ = 'X'; } if (stats.isIncoming) { *pch++ = 'I'; } *pch = '\0'; return stats; } } // namespace peer_stat_helpers } // namespace tr_peer_stat* tr_peerMgrPeerStats(tr_torrent const* tor, size_t* setme_count) { using namespace peer_stat_helpers; TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm->manager != nullptr); auto const n = tor->swarm->peerCount(); auto* const ret = new tr_peer_stat[n]; auto const now = tr_time(); auto const now_msec = tr_time_msec(); std::transform( std::begin(tor->swarm->peers), std::end(tor->swarm->peers), ret, [&now, &now_msec](auto const* peer) { return getPeerStats(peer, now, now_msec); }); *setme_count = n; return ret; } void tr_peerMgrClearInterest(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); auto& peers = tor->swarm->peers; std::for_each(std::begin(peers), std::end(peers), [](auto* const peer) { peer->set_interested(false); }); } namespace { namespace update_interest_helpers { /* does this peer have any pieces that we want? */ [[nodiscard]] bool isPeerInteresting( tr_torrent const* const tor, std::vector const& piece_is_interesting, tr_peerMsgs const* const peer) { /* these cases should have already been handled by the calling code... */ TR_ASSERT(!tor->isDone()); TR_ASSERT(tor->clientCanDownload()); if (peer->isSeed()) { return true; } for (tr_piece_index_t i = 0; i < tor->pieceCount(); ++i) { if (piece_is_interesting[i] && peer->hasPiece(i)) { return true; } } return false; } // determine which peers to show interest in void updateInterest(tr_swarm* swarm) { // sometimes this function isn't necessary auto const* const tor = swarm->tor; if (tor->isDone() || !tor->clientCanDownload()) { return; } if (auto const peer_count = swarm->peerCount(); peer_count > 0) { int const n = tor->pieceCount(); // build a bitfield of interesting pieces... auto piece_is_interesting = std::vector{}; piece_is_interesting.resize(n); for (int i = 0; i < n; ++i) { piece_is_interesting[i] = tor->pieceIsWanted(i) && !tor->hasPiece(i); } for (auto* const peer : swarm->peers) { peer->set_interested(isPeerInteresting(tor, piece_is_interesting, peer)); } } } } // namespace update_interest_helpers } // namespace // --- namespace { namespace rechoke_uploads_helpers { struct ChokeData { ChokeData(tr_peerMsgs* msgs_in, int rate_in, uint8_t salt_in, bool is_interested_in, bool was_choked_in, bool is_choked_in) : msgs{ msgs_in } , rate{ rate_in } , salt{ salt_in } , is_interested{ is_interested_in } , was_choked{ was_choked_in } , is_choked{ is_choked_in } { } tr_peerMsgs* msgs; int rate; uint8_t salt; bool is_interested; bool was_choked; bool is_choked; [[nodiscard]] constexpr auto compare(ChokeData const& that) const noexcept // <=> { if (this->rate != that.rate) // prefer higher overall speeds { return this->rate > that.rate ? -1 : 1; } if (this->was_choked != that.was_choked) // prefer unchoked { return this->was_choked ? 1 : -1; } if (this->salt != that.salt) // random order { return this->salt < that.salt ? -1 : 1; } return 0; } [[nodiscard]] constexpr auto operator<(ChokeData const& that) const noexcept { return compare(that) < 0; } }; /* get a rate for deciding which peers to choke and unchoke. */ [[nodiscard]] auto getRateBps(tr_torrent const* tor, tr_peer const* peer, uint64_t now) { if (tor->isDone()) { return peer->get_piece_speed_bytes_per_second(now, TR_CLIENT_TO_PEER); } /* downloading a private torrent... take upload speed into account * because there may only be a small window of opportunity to share */ if (tor->isPrivate()) { return peer->get_piece_speed_bytes_per_second(now, TR_PEER_TO_CLIENT) + peer->get_piece_speed_bytes_per_second(now, TR_CLIENT_TO_PEER); } /* downloading a public torrent */ return peer->get_piece_speed_bytes_per_second(now, TR_PEER_TO_CLIENT); } // an optimistically unchoked peer is immune from rechoking // for this many calls to rechokeUploads(). auto constexpr OptimisticUnchokeMultiplier = uint8_t{ 4 }; void rechokeUploads(tr_swarm* s, uint64_t const now) { auto const lock = s->unique_lock(); auto const peer_count = s->peerCount(); auto& peers = s->peers; auto choked = std::vector{}; choked.reserve(peer_count); auto const* const session = s->manager->session; bool const choke_all = !s->tor->clientCanUpload(); bool const is_maxed_out = s->tor->bandwidth_.is_maxed_out(TR_UP, now); /* an optimistic unchoke peer's "optimistic" * state lasts for N calls to rechokeUploads(). */ if (s->optimistic_unchoke_time_scaler > 0) { --s->optimistic_unchoke_time_scaler; } else { s->optimistic = nullptr; } /* sort the peers by preference and rate */ auto salter = tr_salt_shaker{}; for (auto* const peer : peers) { if (peer->isSeed()) { /* choke seeds and partial seeds */ peer->set_choke(true); } else if (choke_all) { /* choke everyone if we're not uploading */ peer->set_choke(true); } else if (peer != s->optimistic) { choked.emplace_back( peer, getRateBps(s->tor, peer, now), salter(), peer->is_peer_interested(), peer->is_peer_choked(), true); } } std::sort(std::begin(choked), std::end(choked)); /** * Reciprocation and number of uploads capping is managed by unchoking * the N peers which have the best upload rate and are interested. * This maximizes the client's download rate. These N peers are * referred to as downloaders, because they are interested in downloading * from the client. * * Peers which have a better upload rate (as compared to the downloaders) * but aren't interested get unchoked. If they become interested, the * downloader with the worst upload rate gets choked. If a client has * a complete file, it uses its upload rate rather than its download * rate to decide which peers to unchoke. * * If our bandwidth is maxed out, don't unchoke any more peers. */ auto checked_choke_count = size_t{ 0U }; auto unchoked_interested = size_t{ 0U }; for (auto& item : choked) { if (unchoked_interested >= session->uploadSlotsPerTorrent()) { break; } item.is_choked = is_maxed_out ? item.was_choked : false; ++checked_choke_count; if (item.is_interested) { ++unchoked_interested; } } /* optimistic unchoke */ if (s->optimistic == nullptr && !is_maxed_out && checked_choke_count < std::size(choked)) { auto rand_pool = std::vector{}; for (auto i = checked_choke_count, n = std::size(choked); i < n; ++i) { if (choked[i].is_interested) { rand_pool.push_back(&choked[i]); } } if (auto const n = std::size(rand_pool); n != 0) { auto* c = rand_pool[tr_rand_int(n)]; c->is_choked = false; s->optimistic = c->msgs; s->optimistic_unchoke_time_scaler = OptimisticUnchokeMultiplier; } } for (auto& item : choked) { item.msgs->set_choke(item.is_choked); } } } // namespace rechoke_uploads_helpers } // namespace void tr_peerMgr::rechokePulse() const { using namespace update_interest_helpers; using namespace rechoke_uploads_helpers; auto const lock = unique_lock(); auto const now = tr_time_msec(); for (auto* const tor : session->torrents()) { if (tor->isRunning) { // possibly stop torrents that have seeded enough tr_torrentCheckSeedLimit(tor); } if (tor->isRunning) { if (auto* const swarm = tor->swarm; swarm->stats.peer_count > 0) { rechokeUploads(swarm, now); updateInterest(swarm); } } } } // --- Life and Death namespace { namespace disconnect_helpers { // when many peers are available, keep idle ones this long auto constexpr MinUploadIdleSecs = time_t{ 60 }; // when few peers are available, keep idle ones this long auto constexpr MaxUploadIdleSecs = time_t{ 60 * 5 }; [[nodiscard]] bool shouldPeerBeClosed(tr_swarm const* s, tr_peerMsgs const* peer, size_t peer_count, time_t const now) { /* if it's marked for purging, close it */ if (peer->do_purge) { tr_logAddTraceSwarm(s, fmt::format("purging peer {} because its do_purge flag is set", peer->display_name())); return true; } auto const* tor = s->tor; auto const* const atom = peer->atom; /* disconnect if we're both seeds and enough time has passed for PEX */ if (tor->isDone() && peer->isSeed()) { return !tor->allowsPex() || now - atom->time >= 30; } /* disconnect if it's been too long since piece data has been transferred. * this is on a sliding scale based on number of available peers... */ { auto const relax_strictness_if_fewer_than_n = static_cast(std::lround(tor->peerLimit() * 0.9)); /* if we have >= relaxIfFewerThan, strictness is 100%. * if we have zero connections, strictness is 0% */ float const strictness = peer_count >= relax_strictness_if_fewer_than_n ? 1.0 : peer_count / (float)relax_strictness_if_fewer_than_n; auto const lo = MinUploadIdleSecs; auto const hi = MaxUploadIdleSecs; time_t const limit = hi - (hi - lo) * strictness; time_t const idle_time = now - std::max(atom->time, atom->piece_data_time); if (idle_time > limit) { tr_logAddTraceSwarm( s, fmt::format( "purging peer {} because it's been {} secs since we shared anything", peer->display_name(), idle_time)); return true; } } return false; } void closePeer(tr_peer* peer) { TR_ASSERT(peer != nullptr); auto const* const s = peer->swarm; /* if we transferred piece data, then they might be good peers, so reset their `num_fails' weight to zero. otherwise we connected to them fruitlessly, so mark it as another fail */ if (auto* const atom = peer->atom; atom->piece_data_time != 0) { tr_logAddTraceSwarm(s, fmt::format("resetting atom {} num_fails to 0", peer->display_name())); atom->num_fails = 0; } else { ++atom->num_fails; tr_logAddTraceSwarm(s, fmt::format("incremented atom {} num_fails to {}", peer->display_name(), atom->num_fails)); } tr_logAddTraceSwarm(s, fmt::format("removing bad peer {}", peer->display_name())); peer->swarm->removePeer(peer); } struct ComparePeerByActivity { [[nodiscard]] constexpr static int compare(tr_peer const* a, tr_peer const* b) // <=> { if (a->do_purge != b->do_purge) { return a->do_purge ? 1 : -1; } /* the one to give us data more recently goes first */ if (a->atom->piece_data_time != b->atom->piece_data_time) { return a->atom->piece_data_time > b->atom->piece_data_time ? -1 : 1; } /* the one we connected to most recently goes first */ if (a->atom->time != b->atom->time) { return a->atom->time > b->atom->time ? -1 : 1; } return 0; } [[nodiscard]] constexpr bool operator()(tr_peer const* a, tr_peer const* b) const // less than { return compare(a, b) < 0; } }; [[nodiscard]] auto getPeersToClose(tr_swarm const* const swarm, time_t const now_sec) { auto peers_to_close = std::vector{}; auto const peer_count = swarm->peerCount(); for (auto* peer : swarm->peers) { if (shouldPeerBeClosed(swarm, peer, peer_count, now_sec)) { peers_to_close.push_back(peer); } } return peers_to_close; } void closeBadPeers(tr_swarm* s, time_t const now_sec) { for (auto* peer : getPeersToClose(s, now_sec)) { closePeer(peer); } } void enforceSwarmPeerLimit(tr_swarm* swarm, size_t max) { // do we have too many peers? if (auto const n = swarm->peerCount(); n <= max) { return; } // close all but the `max` most active auto peers = swarm->peers; std::partial_sort(std::begin(peers), std::begin(peers) + max, std::end(peers), ComparePeerByActivity{}); std::for_each(std::begin(peers) + max, std::end(peers), closePeer); } void enforceSessionPeerLimit(tr_session* session) { // No need to disconnect if we are under the peer limit auto const max = session->peerLimit(); if (tr_peerMsgs::size() <= max) { return; } // Make a list of all the peers. auto peers = std::vector{}; peers.reserve(tr_peerMsgs::size()); for (auto const* const tor : session->torrents()) { peers.insert(std::end(peers), std::begin(tor->swarm->peers), std::end(tor->swarm->peers)); } TR_ASSERT(tr_peerMsgs::size() == std::size(peers)); if (std::size(peers) > max) { std::partial_sort(std::begin(peers), std::begin(peers) + max, std::end(peers), ComparePeerByActivity{}); std::for_each(std::begin(peers) + max, std::end(peers), closePeer); } } } // namespace disconnect_helpers } // namespace void tr_peerMgr::reconnectPulse() { using namespace disconnect_helpers; auto const lock = session->unique_lock(); auto const now_sec = tr_time(); // remove crappy peers for (auto* const tor : session->torrents()) { auto* const swarm = tor->swarm; if (!swarm->is_running) { swarm->removeAllPeers(); } else { closeBadPeers(swarm, now_sec); } } // if we're over the per-torrent peer limits, cull some peers for (auto* const tor : session->torrents()) { if (tor->isRunning) { enforceSwarmPeerLimit(tor->swarm, tor->peerLimit()); } } // if we're over the per-session peer limits, cull some peers enforceSessionPeerLimit(session); // try to make new peer connections auto const max_connections_per_pulse = int(MaxConnectionsPerSecond * (ReconnectPeriodMsec / 1000.0)); makeNewPeerConnections(max_connections_per_pulse); } // --- Bandwidth Allocation namespace { namespace bandwidth_helpers { void pumpAllPeers(tr_peerMgr* mgr) { for (auto* const tor : mgr->session->torrents()) { for (auto* const peer : tor->swarm->peers) { peer->pulse(); } } } void queuePulse(tr_session* session, tr_direction dir) { TR_ASSERT(session != nullptr); TR_ASSERT(tr_isDirection(dir)); if (!session->queueEnabled(dir)) { return; } auto const n = session->countQueueFreeSlots(dir); for (auto* tor : session->getNextQueuedTorrents(dir, n)) { tr_torrentStartNow(tor); session->onQueuedTorrentStarted(tor); } } } // namespace bandwidth_helpers } // namespace void tr_peerMgr::bandwidthPulse() { using namespace bandwidth_helpers; auto const lock = unique_lock(); pumpAllPeers(this); // allocate bandwidth to the peers static auto constexpr Msec = std::chrono::duration_cast(BandwidthPeriod).count(); session->top_bandwidth_.allocate(Msec); // torrent upkeep for (auto* const tor : session->torrents()) { tor->do_idle_work(); tr_torrentMagnetDoIdleWork(tor); } /* pump the queues */ queuePulse(session, TR_UP); queuePulse(session, TR_DOWN); reconnectPulse(); } // --- bool tr_swarm::peer_is_in_use(peer_atom const& atom) const { return atom.is_connected || outgoing_handshakes.count(atom.addr) != 0U || manager->incoming_handshakes.count(atom.addr) != 0U; } namespace { namespace connect_helpers { /* is this atom someone that we'd want to initiate a connection to? */ [[nodiscard]] bool isPeerCandidate(tr_torrent const* tor, peer_atom const& atom, time_t const now) { // have we already tried and failed to connect? if (auto const reachable = atom.isReachable(); reachable && !*reachable) { return false; } // not if we're both seeds if (tor->isDone() && atom.isSeed()) { return false; } // not if we've already got a connection to them... if (tor->swarm->peer_is_in_use(atom)) { return false; } // not if we just tried them already if (now - atom.time < atom.getReconnectIntervalSecs(now)) { return false; } // not if they're blocklisted if (atom.isBlocklisted(tor->session)) { return false; } // not if they're banned... if ((atom.flags2 & MyflagBanned) != 0) { return false; } return true; } struct peer_candidate { uint64_t score; tr_torrent* tor; peer_atom* atom; }; [[nodiscard]] bool torrentWasRecentlyStarted(tr_torrent const* tor) { return difftime(tr_time(), tor->startDate) < 120; } [[nodiscard]] constexpr uint64_t addValToKey(uint64_t value, int width, uint64_t addme) { value = value << (uint64_t)width; value |= addme; return value; } /* smaller value is better */ [[nodiscard]] uint64_t getPeerCandidateScore(tr_torrent const* tor, peer_atom const& atom, uint8_t salt) { auto i = uint64_t{}; auto score = uint64_t{}; bool const failed = atom.lastConnectionAt < atom.lastConnectionAttemptAt; /* prefer peers we've connected to, or never tried, over peers we failed to connect to. */ i = failed ? 1 : 0; score = addValToKey(score, 1, i); /* prefer the one we attempted least recently (to cycle through all peers) */ i = atom.lastConnectionAttemptAt; score = addValToKey(score, 32, i); /* prefer peers belonging to a torrent of a higher priority */ switch (tor->getPriority()) { case TR_PRI_HIGH: i = 0; break; case TR_PRI_NORMAL: i = 1; break; case TR_PRI_LOW: i = 2; break; } score = addValToKey(score, 4, i); /* prefer recently-started torrents */ i = torrentWasRecentlyStarted(tor) ? 0 : 1; score = addValToKey(score, 1, i); /* prefer torrents we're downloading with */ i = tor->isDone() ? 1 : 0; score = addValToKey(score, 1, i); /* prefer peers that are known to be connectible */ i = (atom.flags & ADDED_F_CONNECTABLE) != 0 ? 0 : 1; score = addValToKey(score, 1, i); /* prefer peers that we might be able to upload to */ i = (atom.flags & ADDED_F_SEED_FLAG) == 0 ? 0 : 1; score = addValToKey(score, 1, i); /* Prefer peers that we got from more trusted sources. * lower `fromBest` values indicate more trusted sources */ score = addValToKey(score, 4, atom.fromBest); /* salt */ score = addValToKey(score, 8, salt); return score; } /** @return an array of all the atoms we might want to connect to */ [[nodiscard]] std::vector getPeerCandidates(tr_session* session, size_t max) { auto const now = tr_time(); auto const now_msec = tr_time_msec(); // leave 5% of connection slots for incoming connections -- ticket #2609 if (auto const max_candidates = static_cast(session->peerLimit() * 0.95); max_candidates <= tr_peerMsgs::size()) { return {}; } auto candidates = std::vector{}; candidates.reserve(peer_atom::atom_count()); /* populate the candidate array */ auto salter = tr_salt_shaker{}; for (auto* const tor : session->torrents()) { auto* const swarm = tor->swarm; if (!swarm->is_running) { continue; } /* if everyone in the swarm is seeds and pex is disabled because * the torrent is private, then don't initiate connections */ bool const seeding = tor->isDone(); if (seeding && swarm->isAllSeeds() && tor->isPrivate()) { continue; } /* if we've already got enough peers in this torrent... */ if (tor->peerLimit() <= swarm->peerCount()) { continue; } /* if we've already got enough speed in this torrent... */ if (seeding && tor->bandwidth_.is_maxed_out(TR_UP, now_msec)) { continue; } for (auto& atom : swarm->pool) { if (isPeerCandidate(tor, atom, now)) { candidates.push_back({ getPeerCandidateScore(tor, atom, salter()), tor, &atom }); } } } // only keep the best `max` candidates if (std::size(candidates) > max) { std::partial_sort( std::begin(candidates), std::begin(candidates) + max, std::end(candidates), [](auto const& a, auto const& b) { return a.score < b.score; }); candidates.resize(max); } return candidates; } void initiateConnection(tr_peerMgr* mgr, tr_swarm* s, peer_atom& atom) { using namespace handshake_helpers; auto const now = tr_time(); bool utp = mgr->session->allowsUTP() && !atom.utp_failed; if (atom.fromFirst == TR_PEER_FROM_PEX) { /* PEX has explicit signalling for µTP support. If an atom originally came from PEX and doesn't have the µTP flag, skip the µTP connection attempt. Are we being optimistic here? */ utp = utp && (atom.flags & ADDED_F_UTP_FLAGS) != 0; } auto* const session = mgr->session; if (tr_peer_socket::limit_reached(session) || (!utp && !session->allowsTCP())) { return; } tr_logAddTraceSwarm( s, fmt::format("Starting an OUTGOING {} connection with {}", utp ? " µTP" : "TCP", atom.display_name())); auto peer_io = tr_peerIo::new_outgoing( session, &session->top_bandwidth_, atom.addr, atom.port, s->tor->infoHash(), s->tor->completeness == TR_SEED, utp); if (!peer_io) { tr_logAddTraceSwarm(s, fmt::format("peerIo not created; marking peer {} as unreachable", atom.display_name())); atom.flags2 |= MyflagUnreachable; ++atom.num_fails; } else { s->outgoing_handshakes.try_emplace( atom.addr, &mgr->handshake_mediator_, peer_io, session->encryptionMode(), [mgr](tr_handshake::Result const& result) { return on_handshake_done(mgr, result); }); } atom.lastConnectionAttemptAt = now; atom.time = now; } } // namespace connect_helpers } // namespace void tr_peerMgr::makeNewPeerConnections(size_t max) { using namespace connect_helpers; auto const lock = session->unique_lock(); for (auto& candidate : getPeerCandidates(session, max)) { initiateConnection(this, candidate.tor->swarm, *candidate.atom); } } // --- bool HandshakeMediator::is_peer_known_seed(tr_torrent_id_t tor_id, tr_address const& addr) const { auto const* const tor = session_.torrents().get(tor_id); return tor != nullptr && tor->swarm != nullptr && tor->swarm->peer_is_a_seed(addr); }