// This file Copyright © 2010 Juliusz Chroboczek. // It may be used under the MIT (SPDX: MIT) license. // License text can be found in the licenses/ folder. #include #include #include #include /* memcmp(), memset() */ #ifdef _WIN32 #include /* dup2() */ #else #include /* dup2() */ #endif #include #include #include "transmission.h" #include "log.h" #include "net.h" #include "session.h" #include "tr-assert.h" #include "tr-dht.h" #include "tr-utp.h" #include "utils.h" /* Since we use a single UDP socket in order to implement multiple uTP sockets, try to set up huge buffers. */ static auto constexpr RecvBufferSize = 4 * 1024 * 1024; static auto constexpr SendBufferSize = 1 * 1024 * 1024; static auto constexpr SmallBufferSize = 32 * 1024; static void set_socket_buffers(tr_socket_t fd, bool large) { int rbuf = 0; int sbuf = 0; socklen_t rbuf_len = sizeof(rbuf); socklen_t sbuf_len = sizeof(sbuf); int size = large ? RecvBufferSize : SmallBufferSize; int rc = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&size), sizeof(size)); if (rc < 0) { tr_logAddDebug(fmt::format("Couldn't set receive buffer: {}", tr_net_strerror(sockerrno))); } size = large ? SendBufferSize : SmallBufferSize; rc = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&size), sizeof(size)); if (rc < 0) { tr_logAddDebug(fmt::format("Couldn't set send buffer: {}", tr_net_strerror(sockerrno))); } if (large) { rc = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, reinterpret_cast(&rbuf), &rbuf_len); if (rc < 0) { rbuf = 0; } rc = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, reinterpret_cast(&sbuf), &sbuf_len); if (rc < 0) { sbuf = 0; } if (rbuf < RecvBufferSize) { tr_logAddDebug(fmt::format("Couldn't set receive buffer: requested {}, got {}", RecvBufferSize, rbuf)); #ifdef __linux__ tr_logAddDebug(fmt::format("Please add the line 'net.core.rmem_max = {}' to /etc/sysctl.conf", RecvBufferSize)); #endif } if (sbuf < SendBufferSize) { tr_logAddDebug(fmt::format("Couldn't set send buffer: requested {}, got {}", SendBufferSize, sbuf)); #ifdef __linux__ tr_logAddDebug(fmt::format("Please add the line 'net.core.wmem_max = {}' to /etc/sysctl.conf", SendBufferSize)); #endif } } } void tr_session::tr_udp_core::set_socket_buffers() { bool const utp = session_.allowsUTP(); if (udp_socket_ != TR_BAD_SOCKET) { ::set_socket_buffers(udp_socket_, utp); } if (udp6_socket_ != TR_BAD_SOCKET) { ::set_socket_buffers(udp6_socket_, utp); } } static tr_socket_t rebind_ipv6_impl(in6_addr sin6_addr, tr_port port) { auto const sock = socket(PF_INET6, SOCK_DGRAM, 0); if (sock == TR_BAD_SOCKET) { return TR_BAD_SOCKET; } #ifdef IPV6_V6ONLY /* Since we always open an IPv4 socket on the same port, * this shouldn't matter. But I'm superstitious. */ int one = 1; (void)setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast(&one), sizeof(one)); #endif auto sin6 = sockaddr_in6{}; sin6.sin6_family = AF_INET6; sin6.sin6_addr = sin6_addr; sin6.sin6_port = port.network(); if (::bind(sock, reinterpret_cast(&sin6), sizeof(sin6)) == -1) { tr_netCloseSocket(sock); return TR_BAD_SOCKET; } return sock; } /* BEP-32 has a rather nice explanation of why we need to bind to one IPv6 address, if I may say so myself. */ void tr_session::tr_udp_core::rebind_ipv6(bool force) { auto const ipv6 = tr_globalIPv6(&session_); /* We currently have no way to enable or disable IPv6 after initialisation. No way to fix that without some surgery to the DHT code itself. */ if (!ipv6 || (!force && udp6_socket_ == TR_BAD_SOCKET)) { udp6_bound_.reset(); return; } if (udp6_bound_ && memcmp(&*udp6_bound_, &*ipv6, sizeof(*ipv6)) == 0) { return; } auto const sock = rebind_ipv6_impl(*ipv6, udp_port_); if (sock == TR_BAD_SOCKET) { /* Something went wrong. It's difficult to recover, so let's * simply set things up so that we try again next time. */ auto const error_code = errno; auto ipv6_readable = std::array{}; evutil_inet_ntop(AF_INET6, &*ipv6, std::data(ipv6_readable), std::size(ipv6_readable)); tr_logAddWarn(fmt::format( _("Couldn't rebind IPv6 socket {address}: {error} ({error_code})"), fmt::arg("address", std::data(ipv6_readable)), fmt::arg("error", tr_strerror(error_code)), fmt::arg("error_code", error_code))); udp6_bound_.reset(); return; } if (udp6_socket_ != TR_BAD_SOCKET) { tr_netCloseSocket(udp6_socket_); } udp6_socket_ = sock; udp6_bound_ = ipv6; } static void event_callback(evutil_socket_t s, [[maybe_unused]] short type, void* vsession) { TR_ASSERT(vsession != nullptr); TR_ASSERT(type == EV_READ); auto buf = std::array{}; auto from = sockaddr_storage{}; auto* session = static_cast(vsession); socklen_t fromlen = sizeof(from); int const rc = recvfrom(s, reinterpret_cast(std::data(buf)), std::size(buf) - 1, 0, (struct sockaddr*)&from, &fromlen); /* Since most packets we receive here are µTP, make quick inline checks for the other protocols. The logic is as follows: - all DHT packets start with 'd' - all UDP tracker packets start with a 32-bit (!) "action", which is between 0 and 3 - the above cannot be µTP packets, since these start with a 4-bit version number (1). */ if (rc > 0) { if (buf[0] == 'd') { if (session->allowsDHT()) { buf[rc] = '\0'; /* required by the DHT code */ tr_dhtCallback(session, std::data(buf), rc, (struct sockaddr*)&from, fromlen); } } else if (rc >= 8 && buf[0] == 0 && buf[1] == 0 && buf[2] == 0 && buf[3] <= 3) { if (!session->tau_handle_message(std::data(buf), rc)) { tr_logAddTrace("Couldn't parse UDP tracker packet."); } } else { if (session->allowsUTP()) { if (!tr_utpPacket(std::data(buf), rc, (struct sockaddr*)&from, fromlen, session)) { tr_logAddTrace("Unexpected UDP packet"); } } } } } tr_session::tr_udp_core::tr_udp_core(tr_session& session) : session_{ session } { udp_port_ = session_.peerPort(); if (std::empty(udp_port_)) { return; } udp_socket_ = socket(PF_INET, SOCK_DGRAM, 0); if (udp_socket_ == TR_BAD_SOCKET) { tr_logAddWarn(_("Couldn't create IPv4 socket")); } else { auto const [public_addr, is_default] = session_.publicAddress(TR_AF_INET); auto sin = sockaddr_in{}; sin.sin_family = AF_INET; if (!is_default) { sin.sin_addr = public_addr.addr.addr4; } sin.sin_port = udp_port_.network(); int const rc = bind(udp_socket_, (struct sockaddr*)&sin, sizeof(sin)); if (rc == -1) { auto const error_code = errno; tr_logAddWarn(fmt::format( _("Couldn't bind IPv4 socket {address}: {error} ({error_code})"), fmt::arg("address", public_addr.readable(udp_port_)), fmt::arg("error", tr_strerror(error_code)), fmt::arg("error_code", error_code))); tr_netCloseSocket(udp_socket_); udp_socket_ = TR_BAD_SOCKET; } else { udp_event_ = event_new(session_.eventBase(), udp_socket_, EV_READ | EV_PERSIST, event_callback, &session_); if (udp_event_ == nullptr) { tr_logAddWarn(_("Couldn't allocate IPv4 event")); } } } // IPV6 if (tr_globalIPv6(nullptr).has_value()) { rebind_ipv6(true); } if (udp6_socket_ != TR_BAD_SOCKET) { udp6_event_ = event_new(session_.eventBase(), udp6_socket_, EV_READ | EV_PERSIST, event_callback, &session_); if (udp6_event_ == nullptr) { tr_logAddWarn(_("Couldn't allocate IPv6 event")); } } set_socket_buffers(); set_socket_tos(); if (session_.allowsDHT()) { tr_dhtInit(&session_); } if (udp_event_ != nullptr) { event_add(udp_event_, nullptr); } if (udp6_event_ != nullptr) { event_add(udp6_event_, nullptr); } } void tr_session::tr_udp_core::dhtUpkeep() { if (tr_dhtEnabled(&session_)) { tr_dhtUpkeep(&session_); } } void tr_session::tr_udp_core::dhtUninit() { if (tr_dhtEnabled(&session_)) { tr_dhtUninit(&session_); } } tr_session::tr_udp_core::~tr_udp_core() { dhtUninit(); if (udp_socket_ != TR_BAD_SOCKET) { tr_netCloseSocket(udp_socket_); udp_socket_ = TR_BAD_SOCKET; } if (udp_event_ != nullptr) { event_free(udp_event_); udp_event_ = nullptr; } if (udp6_socket_ != TR_BAD_SOCKET) { tr_netCloseSocket(udp6_socket_); udp6_socket_ = TR_BAD_SOCKET; } if (udp6_event_ != nullptr) { event_free(udp6_event_); udp6_event_ = nullptr; } udp6_bound_.reset(); } void tr_session::tr_udp_core::sendto(void const* buf, size_t buflen, struct sockaddr const* to, socklen_t const tolen) const { int error = 0; std::array peer = {}; if (to->sa_family == AF_INET) { if (udp_socket_ != TR_BAD_SOCKET) { if (::sendto(udp_socket_, static_cast(buf), buflen, 0, to, tolen) == -1) { error = -1; } } else { error = -1; errno = EBADF; } if (error == -1) { evutil_inet_ntop( AF_INET, &((reinterpret_cast(to))->sin_addr), std::data(peer), std::size(peer)); } } else if (to->sa_family == AF_INET6) { if (udp6_socket_ != TR_BAD_SOCKET) { if (::sendto(udp6_socket_, static_cast(buf), buflen, 0, to, tolen) == -1) { error = -1; } } else { error = -1; errno = EBADF; } if (error == -1) { evutil_inet_ntop( AF_INET6, &((reinterpret_cast(to))->sin6_addr), std::data(peer), std::size(peer)); } } else { error = -1; errno = EAFNOSUPPORT; } if (error == -1) { tr_logAddWarn(fmt::format( "Couldn't send to {address}: {errno} ({error})", fmt::arg("address", std::data(peer)), fmt::arg("errno", errno), fmt::arg("error", tr_strerror(errno)))); } }