/* * This file Copyright (C) 2008 Charles Kerr * * This file is licensed by the GPL version 2. Works owned by the * Transmission project are granted a special exemption to clause 2(b) * so that the bulk of its code can remain under the MIT license. * This exemption does not extend to derived works not owned by * the Transmission project. * * $Id$ */ #include #include #include "event.h" #include "transmission.h" #include "bandwidth.h" #include "crypto.h" #include "peer-io.h" #include "ptrarray.h" #include "utils.h" /*** **** ***/ enum { HISTORY_MSEC = 2000, INTERVAL_MSEC = HISTORY_MSEC, GRANULARITY_MSEC = 50, HISTORY_SIZE = ( INTERVAL_MSEC / GRANULARITY_MSEC ), MAGIC_NUMBER = 43143 }; struct bratecontrol { int newest; struct { uint64_t date, size; } transfers[HISTORY_SIZE]; }; static float getSpeed( const struct bratecontrol * r, int interval_msec ) { uint64_t bytes = 0; const uint64_t cutoff = tr_date ( ) - interval_msec; int i = r->newest; for( ;; ) { if( r->transfers[i].date <= cutoff ) break; bytes += r->transfers[i].size; if( --i == -1 ) i = HISTORY_SIZE - 1; /* circular history */ if( i == r->newest ) break; /* we've come all the way around */ } return ( bytes / 1024.0 ) * ( 1000.0 / interval_msec ); } static void bytesUsed( struct bratecontrol * r, size_t size ) { const uint64_t now = tr_date ( ); if( r->transfers[r->newest].date + GRANULARITY_MSEC >= now ) r->transfers[r->newest].size += size; else { if( ++r->newest == HISTORY_SIZE ) r->newest = 0; r->transfers[r->newest].date = now; r->transfers[r->newest].size = size; } } /****** ******* ******* ******/ struct tr_band { tr_bool isLimited; tr_bool honorParentLimits; size_t bytesLeft; double desiredSpeed; struct bratecontrol raw; struct bratecontrol piece; }; struct tr_bandwidth { struct tr_band band[2]; struct tr_bandwidth * parent; int magicNumber; tr_session * session; tr_ptrArray children; /* struct tr_bandwidth */ tr_ptrArray peers; /* tr_peerIo */ }; /*** **** ***/ static int comparePointers( const void * a, const void * b ) { if( a != b ) return a < b ? -1 : 1; return 0; } tr_bool tr_isBandwidth( const tr_bandwidth * b ) { return ( b != NULL ) && ( b->magicNumber == MAGIC_NUMBER ); } /*** **** ***/ tr_bandwidth* tr_bandwidthNew( tr_session * session, tr_bandwidth * parent ) { tr_bandwidth * b = tr_new0( tr_bandwidth, 1 ); b->session = session; b->children = TR_PTR_ARRAY_INIT; b->peers = TR_PTR_ARRAY_INIT; b->magicNumber = MAGIC_NUMBER; b->band[TR_UP].honorParentLimits = TRUE; b->band[TR_DOWN].honorParentLimits = TRUE; tr_bandwidthSetParent( b, parent ); return b; } void tr_bandwidthFree( tr_bandwidth * b ) { assert( tr_isBandwidth( b ) ); tr_bandwidthSetParent( b, NULL ); tr_ptrArrayDestruct( &b->peers, NULL ); tr_ptrArrayDestruct( &b->children, NULL ); b->magicNumber = 0xDEAD; tr_free( b ); } /*** **** ***/ void tr_bandwidthSetParent( tr_bandwidth * b, tr_bandwidth * parent ) { assert( tr_isBandwidth( b ) ); assert( b != parent ); if( b->parent ) { assert( tr_isBandwidth( b->parent ) ); tr_ptrArrayRemoveSorted( &b->parent->children, b, comparePointers ); b->parent = NULL; } if( parent ) { assert( tr_isBandwidth( parent ) ); assert( parent->parent != b ); tr_ptrArrayInsertSorted( &parent->children, b, comparePointers ); b->parent = parent; } } void tr_bandwidthHonorParentLimits( tr_bandwidth * b, tr_direction dir, tr_bool honorParentLimits ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); b->band[dir].honorParentLimits = honorParentLimits; } /*** **** ***/ void tr_bandwidthSetDesiredSpeed( tr_bandwidth * b, tr_direction dir, double desiredSpeed ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); b->band[dir].desiredSpeed = desiredSpeed; } double tr_bandwidthGetDesiredSpeed( const tr_bandwidth * b, tr_direction dir ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); return b->band[dir].desiredSpeed; } void tr_bandwidthSetLimited( tr_bandwidth * b, tr_direction dir, tr_bool isLimited ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); b->band[dir].isLimited = isLimited; } tr_bool tr_bandwidthIsLimited( const tr_bandwidth * b, tr_direction dir ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); return b->band[dir].isLimited; } #if 0 #warning do not check the code in with this enabled #define DEBUG_DIRECTION TR_UP #endif static void allocateBandwidth( tr_bandwidth * b, tr_direction dir, int period_msec, tr_ptrArray * peer_pool ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); /* set the available bandwidth */ if( b->band[dir].isLimited ) { const double desiredSpeed = b->band[dir].desiredSpeed; const double nextPulseSpeed = desiredSpeed; b->band[dir].bytesLeft = MAX( 0.0, nextPulseSpeed * 1024.0 * period_msec / 1000.0 ); #ifdef DEBUG_DIRECTION if( dir == DEBUG_DIRECTION ) fprintf( stderr, "bandwidth %p currentPieceSpeed(%5.2f of %5.2f) desiredSpeed(%5.2f), allocating %5.2f\n", b, currentSpeed, tr_bandwidthGetRawSpeed( b, dir ), desiredSpeed, b->band[dir].bytesLeft/1024.0 ); #endif } /* traverse & repeat for the subtree */ { int i; const int n = TR_PTR_ARRAY_LENGTH( &b->peers ); for( i=0; ipeers, i ) ); } #ifdef DEBUG_DIRECTION if( ( dir == DEBUG_DIRECTION ) && ( n > 1 ) ) fprintf( stderr, "bandwidth %p has %d peers\n", b, n ); #endif /* all children should reallocate too */ if( 1 ) { int i; struct tr_bandwidth ** children = (struct tr_bandwidth**) TR_PTR_ARRAY_DATA( &b->children ); const int n = TR_PTR_ARRAY_LENGTH( &b->children ); for( i=0; i 1 ) { const int increment = 1024; const int bytesUsed = tr_peerIoFlush( peers[i], dir, increment); if( bytesUsed == increment ) ++i; else { /* peer is done writing for now; move it to the end of the list */ tr_peerIo * pio = peers[i]; peers[i] = peers[n-1]; peers[n-1] = pio; --n; } if( i == n ) i = 0; } /* Second phase of IO. To help us scale in high bandwidth situations, * enable on-demand IO for peers with bandwidth left to burn. * This on-demand IO is enabled until (1) the peer runs out of bandwidth, * or (2) the next tr_bandwidthAllocate() call, when we start over again. */ for( i=0; ipeers, peerIo, comparePointers ); } void tr_bandwidthRemovePeer( tr_bandwidth * b, tr_peerIo * peerIo ) { assert( tr_isBandwidth( b ) ); assert( tr_isPeerIo( peerIo ) ); tr_ptrArrayRemoveSorted( &b->peers, peerIo, comparePointers ); } /*** **** ***/ size_t tr_bandwidthClamp( const tr_bandwidth * b, tr_direction dir, size_t byteCount ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); if( b ) { if( b->band[dir].isLimited ) byteCount = MIN( byteCount, b->band[dir].bytesLeft ); if( b->parent && b->band[dir].honorParentLimits ) byteCount = tr_bandwidthClamp( b->parent, dir, byteCount ); } return byteCount; } double tr_bandwidthGetRawSpeed( const tr_bandwidth * b, tr_direction dir ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); return getSpeed( &b->band[dir].raw, HISTORY_MSEC ); } double tr_bandwidthGetPieceSpeed( const tr_bandwidth * b, tr_direction dir ) { assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); return getSpeed( &b->band[dir].piece, HISTORY_MSEC ); } void tr_bandwidthUsed( tr_bandwidth * b, tr_direction dir, size_t byteCount, tr_bool isPieceData ) { struct tr_band * band; size_t oldBytesLeft; assert( tr_isBandwidth( b ) ); assert( tr_isDirection( dir ) ); band = &b->band[dir]; oldBytesLeft = band->bytesLeft; if( band->isLimited && isPieceData ) band->bytesLeft -= MIN( band->bytesLeft, byteCount ); #ifdef DEBUG_DIRECTION if( ( dir == DEBUG_DIRECTION ) && ( band->isLimited ) ) fprintf( stderr, "%p consumed %5zu bytes of %5s data... was %6zu, now %6zu left\n", b, byteCount, (isPieceData?"piece":"raw"), oldBytesLeft, band->bytesLeft ); #endif bytesUsed( &band->raw, byteCount ); if( isPieceData ) bytesUsed( &band->piece, byteCount ); if( b->parent != NULL ) tr_bandwidthUsed( b->parent, dir, byteCount, isPieceData ); }