// This file Copyright © Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include // error codes ERANGE, ... #include #include #include // std::byte #include #include // time_t #include // std::back_inserter #include #include #include // std::tie #include #include #include #include #include #include #include #define LIBTRANSMISSION_PEER_MODULE #include "libtransmission/transmission.h" #include "libtransmission/announcer.h" #include "libtransmission/block-info.h" // tr_block_info #include "libtransmission/clients.h" #include "libtransmission/crypto-utils.h" #include "libtransmission/handshake.h" #include "libtransmission/interned-string.h" #include "libtransmission/log.h" #include "libtransmission/net.h" #include "libtransmission/observable.h" #include "libtransmission/peer-common.h" #include "libtransmission/peer-io.h" #include "libtransmission/peer-mgr-active-requests.h" #include "libtransmission/peer-mgr-wishlist.h" #include "libtransmission/peer-mgr.h" #include "libtransmission/peer-msgs.h" #include "libtransmission/peer-socket.h" #include "libtransmission/quark.h" #include "libtransmission/session.h" #include "libtransmission/timer.h" #include "libtransmission/torrent-magnet.h" #include "libtransmission/torrent.h" #include "libtransmission/torrents.h" #include "libtransmission/tr-assert.h" #include "libtransmission/tr-macros.h" #include "libtransmission/utils.h" #include "libtransmission/values.h" #include "libtransmission/webseed.h" using namespace std::literals; using namespace libtransmission::Values; static auto constexpr CancelHistorySec = 60; // --- namespace { class HandshakeMediator final : public tr_handshake::Mediator { private: [[nodiscard]] static std::optional torrent(tr_torrent* tor) { if (tor == nullptr) { return {}; } auto info = TorrentInfo{}; info.info_hash = tor->info_hash(); info.client_peer_id = tor->peer_id(); info.id = tor->id(); info.is_done = tor->is_done(); return info; } public: explicit HandshakeMediator( tr_session const& session, libtransmission::TimerMaker& timer_maker, tr_torrents& torrents) noexcept : session_{ session } , timer_maker_{ timer_maker } , torrents_{ torrents } { } [[nodiscard]] std::optional torrent(tr_sha1_digest_t const& info_hash) const override { return torrent(torrents_.get(info_hash)); } [[nodiscard]] std::optional torrent_from_obfuscated( tr_sha1_digest_t const& obfuscated_info_hash) const override { return torrent(torrents_.find_from_obfuscated_hash(obfuscated_info_hash)); } [[nodiscard]] bool allows_dht() const override { return session_.allowsDHT(); } [[nodiscard]] bool allows_tcp() const override { return session_.allowsTCP(); } void set_utp_failed(tr_sha1_digest_t const& info_hash, tr_socket_address const& socket_address) override; [[nodiscard]] libtransmission::TimerMaker& timer_maker() override { return timer_maker_; } [[nodiscard]] size_t pad(void* setme, size_t maxlen) const override { auto const len = tr_rand_int(maxlen); tr_rand_buffer(setme, len); return len; } private: tr_session const& session_; libtransmission::TimerMaker& timer_maker_; tr_torrents& torrents_; }; using Handshakes = std::unordered_map; } // anonymous namespace void tr_peer_info::merge(tr_peer_info& that) noexcept { TR_ASSERT(is_connectable_.value_or(true) || !is_connected()); TR_ASSERT(that.is_connectable_.value_or(true) || !that.is_connected()); connection_attempted_at_ = std::max(connection_attempted_at_, that.connection_attempted_at_); connection_changed_at_ = std::max(connection_changed_at_, that.connection_changed_at_); piece_data_at_ = std::max(piece_data_at_, that.piece_data_at_); /* no need to merge blocklist since it gets updated elsewhere */ { // This part is frankly convoluted and confusing, but the idea is: // 1. If the two peer info objects agree that this peer is connectable/non-connectable, // then the answer is straightforward: We keep the agreed value. // 2. If the two peer info objects disagrees as to whether this peer is connectable, // then we reset the flag to an empty value, so that we can try for ourselves when // initiating outgoing connections. // 3. If one object has knowledge and the other doesn't, then we take the word of the // peer info object with knowledge with one exception: // - If the object with knowledge says the peer is not connectable, but we are // currently connected to the peer, then we give it the benefit of the doubt. // The connectable flag will be reset to an empty value. // 4. In case both objects have no knowledge about whether this peer is connectable, // we shall not make any assumptions: We keep the flag empty. // // Truth table: // +-----------------+---------------+----------------------+--------------------+---------+ // | is_connectable_ | is_connected_ | that.is_connectable_ | that.is_connected_ | Result | // +=================+===============+======================+====================+=========+ // | T | T | T | T | T | // | T | T | T | F | T | // | T | T | F | F | ? | // | T | T | ? | T | T | // | T | T | ? | F | T | // | T | F | T | T | T | // | T | F | T | F | T | // | T | F | F | F | ? | // | T | F | ? | T | T | // | T | F | ? | F | T | // | F | F | T | T | ? | // | F | F | T | F | ? | // | F | F | F | F | F | // | F | F | ? | T | ? | // | F | F | ? | F | F | // | ? | T | T | T | T | // | ? | T | T | F | T | // | ? | T | F | F | ? | // | ? | T | ? | T | ? | // | ? | T | ? | F | ? | // | ? | F | T | T | T | // | ? | F | T | F | T | // | ? | F | F | F | F | // | ? | F | ? | T | ? | // | ? | F | ? | F | ? | // | N/A | N/A | F | T | Invalid | // | F | T | N/A | N/A | Invalid | // +-----------------+---------------+----------------------+--------------------+---------+ auto const conn_this = is_connectable_ && *is_connectable_; auto const conn_that = that.is_connectable_ && *that.is_connectable_; if ((!is_connectable_ && !that.is_connectable_) || is_connectable_.value_or(conn_that || is_connected()) != that.is_connectable_.value_or(conn_this || that.is_connected())) { is_connectable_.reset(); } else { set_connectable(conn_this || conn_that); } } set_utp_supported(supports_utp() || that.supports_utp()); /* from_first_ should never be modified */ found_at(that.from_best()); /* num_consecutive_fails_ is already the latest */ pex_flags_ |= that.pex_flags_; if (that.is_banned()) { ban(); } /* is_connected_ should already be set */ set_seed(is_seed() || that.is_seed()); if (that.outgoing_handshake_) { if (outgoing_handshake_) { that.destroy_handshake(); } else { outgoing_handshake_ = std::move(that.outgoing_handshake_); } } } #define tr_logAddDebugSwarm(swarm, msg) tr_logAddDebugTor((swarm)->tor, msg) #define tr_logAddTraceSwarm(swarm, msg) tr_logAddTraceTor((swarm)->tor, msg) namespace { /* better goes first */ constexpr struct { [[nodiscard]] constexpr static int compare(tr_peer_info const& a, tr_peer_info const& b) noexcept // <=> { if (auto const val = a.compare_by_piece_data_time(b); val != 0) { return -val; } if (auto const val = tr_compare_3way(a.from_best(), b.from_best()); val != 0) { return val; } return a.compare_by_failure_count(b); } [[nodiscard]] constexpr bool operator()(tr_peer_info const& a, tr_peer_info const& b) const noexcept { return compare(a, b) < 0; } template [[nodiscard]] constexpr std::enable_if_t())>, tr_peer_info>, bool> operator()(T const& a, T const& b) const noexcept { return compare(*a, *b) < 0; } } CompareAtomsByUsefulness{}; } // namespace /** @brief Opaque, per-torrent data structure for peer connection information */ class tr_swarm { public: using Peers = std::vector; using Pool = small::map>; class WishlistMediator final : public Wishlist::Mediator { public: explicit WishlistMediator(tr_swarm& swarm) : tor_{ *swarm.tor } , swarm_{ swarm } { } [[nodiscard]] bool client_has_block(tr_block_index_t block) const override; [[nodiscard]] bool client_wants_piece(tr_piece_index_t piece) const override; [[nodiscard]] bool is_endgame() const override; [[nodiscard]] bool is_sequential_download() const override; [[nodiscard]] size_t count_active_requests(tr_block_index_t block) const override; [[nodiscard]] size_t count_missing_blocks(tr_piece_index_t piece) const override; [[nodiscard]] size_t count_piece_replication(tr_piece_index_t piece) const override; [[nodiscard]] tr_block_span_t block_span(tr_piece_index_t piece) const override; [[nodiscard]] tr_piece_index_t piece_count() const override; [[nodiscard]] tr_priority_t priority(tr_piece_index_t piece) const override; [[nodiscard]] libtransmission::ObserverTag observe_peer_disconnect( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_got_bitfield( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_got_block( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_got_have( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_got_have_all( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_piece_completed( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_priority_changed( libtransmission::SimpleObservable::Observer observer) override; [[nodiscard]] libtransmission::ObserverTag observe_sequential_download_changed( libtransmission::SimpleObservable::Observer observer) override; private: tr_torrent& tor_; tr_swarm& swarm_; }; [[nodiscard]] auto unique_lock() const { return tor->unique_lock(); } tr_swarm(tr_peerMgr* manager_in, tr_torrent* tor_in) noexcept : manager{ manager_in } , tor{ tor_in } , tags_{ { tor_in->done_.observe([this](tr_torrent*, bool) { on_torrent_done(); }), tor_in->doomed_.observe([this](tr_torrent*) { on_torrent_doomed(); }), tor_in->got_bad_piece_.observe([this](tr_torrent*, tr_piece_index_t p) { on_got_bad_piece(p); }), tor_in->got_metainfo_.observe([this](tr_torrent*) { on_got_metainfo(); }), tor_in->piece_completed_.observe([this](tr_torrent*, tr_piece_index_t p) { on_piece_completed(p); }), tor_in->started_.observe([this](tr_torrent*) { on_torrent_started(); }), tor_in->stopped_.observe([this](tr_torrent*) { on_torrent_stopped(); }), tor_in->swarm_is_all_seeds_.observe([this](tr_torrent* /*tor*/) { on_swarm_is_all_seeds(); }), } } { rebuild_webseeds(); } tr_swarm(tr_swarm&&) = delete; tr_swarm(tr_swarm const&) = delete; tr_swarm& operator=(tr_swarm&&) = delete; tr_swarm& operator=(tr_swarm const&) = delete; ~tr_swarm() { auto const lock = unique_lock(); TR_ASSERT(!is_running); TR_ASSERT(std::empty(peers)); } void cancel_old_requests() { auto const now = tr_time(); auto const oldest = now - RequestTtlSecs; for (auto const& [block, peer] : active_requests.sentBefore(oldest)) { maybe_send_cancel_request(peer, block, nullptr); active_requests.remove(block, peer); } } [[nodiscard]] uint16_t count_active_webseeds(uint64_t now) const noexcept { if (!tor->is_running() || tor->is_done()) { return {}; } return std::count_if( std::begin(webseeds), std::end(webseeds), [&now](auto const& webseed) { return webseed->get_piece_speed(now, TR_DOWN).base_quantity() != 0U; }); } [[nodiscard]] TR_CONSTEXPR20 auto peerCount() const noexcept { return std::size(peers); } void remove_peer(tr_peerMsgs* peer) { auto const lock = unique_lock(); peer_disconnect.emit(tor, peer->has()); auto const& peer_info = peer->peer_info; TR_ASSERT(peer_info); --stats.peer_count; --stats.peer_from_count[peer_info->from_first()]; if (auto iter = std::find(std::begin(peers), std::end(peers), peer); iter != std::end(peers)) { peers.erase(iter); TR_ASSERT(stats.peer_count == peerCount()); } delete peer; } void remove_all_peers() { auto tmp = Peers{}; std::swap(tmp, peers); for (auto* peer : tmp) { remove_peer(peer); } TR_ASSERT(stats.peer_count == 0); } void update_endgame() { /* we consider ourselves to be in endgame if the number of bytes we've got requested is >= the number of bytes left to download */ is_endgame_ = uint64_t(std::size(active_requests)) * tr_block_info::BlockSize >= tor->left_until_done(); } [[nodiscard]] constexpr auto is_endgame() const noexcept { return is_endgame_; } [[nodiscard]] TR_CONSTEXPR20 auto is_all_seeds() const noexcept { if (!pool_is_all_seeds_) { pool_is_all_seeds_ = std::all_of( std::begin(connectable_pool), std::end(connectable_pool), [](auto const& key_val) { return key_val.second->is_seed(); }); } return *pool_is_all_seeds_; } [[nodiscard]] std::shared_ptr get_existing_peer_info(tr_socket_address const& socket_address) const noexcept { if (auto it = connectable_pool.find(socket_address); it != std::end(connectable_pool)) { return it->second; } return {}; } std::shared_ptr ensure_info_exists( tr_socket_address const& socket_address, uint8_t const flags, tr_peer_from const from) { TR_ASSERT(socket_address.is_valid()); TR_ASSERT(from < TR_PEER_FROM__MAX); auto peer_info = get_existing_peer_info(socket_address); if (peer_info) { peer_info->found_at(from); peer_info->set_pex_flags(flags); } else { peer_info = connectable_pool .try_emplace(socket_address, std::make_shared(socket_address, flags, from)) .first->second; ++stats.known_peer_from_count[from]; } mark_all_seeds_flag_dirty(); return peer_info; } static void peer_callback_bt(tr_peerMsgs* const msgs, tr_peer_event const& event, void* const vs) { TR_ASSERT(msgs != nullptr); auto* s = static_cast(vs); TR_ASSERT(msgs->swarm == s); auto const lock = s->unique_lock(); switch (event.type) { case tr_peer_event::Type::ClientSentPieceData: { auto const now = tr_time(); auto* const tor = s->tor; tor->bytes_uploaded_ += event.length; tr_announcerAddBytes(tor, TR_ANN_UP, event.length); tor->set_date_active(now); tor->session->add_uploaded(event.length); msgs->peer_info->set_latest_piece_data_time(now); } break; case tr_peer_event::Type::ClientGotPieceData: { auto const now = tr_time(); on_client_got_piece_data(s->tor, event.length, now); msgs->peer_info->set_latest_piece_data_time(now); } break; case tr_peer_event::Type::ClientGotHave: s->got_have.emit(s->tor, event.pieceIndex); break; case tr_peer_event::Type::ClientGotHaveAll: s->got_have_all.emit(s->tor); break; case tr_peer_event::Type::ClientGotHaveNone: // no-op break; case tr_peer_event::Type::ClientGotBitfield: s->got_bitfield.emit(s->tor, msgs->has()); break; case tr_peer_event::Type::ClientGotChoke: s->active_requests.remove(msgs); break; case tr_peer_event::Type::ClientGotPort: // We have 2 cases: // 1. We don't know the listening port of this peer (i.e. incoming connection and first time ClientGotPort) // 2. We got a new listening port from a known peer if (auto const& info = msgs->peer_info; !std::empty(event.port) && info && (std::empty(info->listen_port()) || info->listen_port() != event.port)) { s->on_got_port(msgs, event); } break; case tr_peer_event::Type::ClientGotSuggest: case tr_peer_event::Type::ClientGotAllowedFast: // not currently supported break; default: peer_callback_common(msgs, event, s); break; } } libtransmission::SimpleObservable peer_disconnect; libtransmission::SimpleObservable got_bitfield; libtransmission::SimpleObservable got_block; libtransmission::SimpleObservable got_have; libtransmission::SimpleObservable got_have_all; mutable tr_swarm_stats stats = {}; uint8_t optimistic_unchoke_time_scaler = 0; bool is_running = false; tr_peerMgr* const manager; tr_torrent* const tor; ActiveRequests active_requests; // depends-on: active_requests std::vector> webseeds; // depends-on: active_requests Peers peers; std::unique_ptr wishlist; Pool connectable_pool; tr_peerMsgs* optimistic = nullptr; /* the optimistic peer, or nullptr if none */ private: void mark_peer_as_seed(tr_peer_info& peer_info) { tr_logAddTraceSwarm(this, fmt::format("marking peer {} as a seed", peer_info.display_name())); peer_info.set_seed(); mark_all_seeds_flag_dirty(); } void rebuild_webseeds() { auto const n = tor->webseed_count(); webseeds.clear(); webseeds.reserve(n); for (size_t i = 0; i < n; ++i) { webseeds.emplace_back(tr_webseed::create(*tor, tor->webseed(i), &tr_swarm::peer_callback_webseed, this)); } webseeds.shrink_to_fit(); stats.active_webseed_count = 0; } void add_strike(tr_peerMsgs* peer) const { tr_logAddTraceSwarm( this, fmt::format("increasing peer {} strike count to {}", peer->display_name(), peer->strikes + 1)); if (++peer->strikes >= MaxBadPiecesPerPeer) { peer->peer_info->ban(); peer->do_purge = true; tr_logAddTraceSwarm(this, fmt::format("banning peer {}", peer->display_name())); } } void stop() { auto const lock = unique_lock(); is_running = false; remove_all_peers(); for (auto& [sockaddr, peer_info] : connectable_pool) { peer_info->destroy_handshake(); } } static void maybe_send_cancel_request(tr_peer* peer, tr_block_index_t block, tr_peer const* muted) { if (peer != nullptr && peer != muted) { peer->cancel_block_request(block); } } void cancel_all_requests_for_block(tr_block_index_t block, tr_peer const* no_notify) { for (auto* peer : active_requests.remove(block)) { maybe_send_cancel_request(peer, block, no_notify); } } void mark_all_seeds_flag_dirty() noexcept { pool_is_all_seeds_.reset(); } void on_torrent_doomed() { auto const lock = unique_lock(); stop(); tor->swarm = nullptr; delete this; } void on_torrent_done() { std::for_each(std::begin(peers), std::end(peers), [](auto* const peer) { peer->set_interested(false); }); wishlist.reset(); } void on_swarm_is_all_seeds() { auto const lock = unique_lock(); for (auto const& [socket_address, peer_info] : connectable_pool) { mark_peer_as_seed(*peer_info); } mark_all_seeds_flag_dirty(); } void on_piece_completed(tr_piece_index_t piece) { bool piece_came_from_peers = false; for (auto* const peer : peers) { // notify the peer that we now have this piece peer->on_piece_completed(piece); if (!piece_came_from_peers) { piece_came_from_peers = peer->blame.test(piece); } } if (piece_came_from_peers) /* webseed downloads don't belong in announce totals */ { tr_announcerAddBytes(tor, TR_ANN_DOWN, tor->piece_size(piece)); } } void on_got_bad_piece(tr_piece_index_t piece) { auto const byte_count = tor->piece_size(piece); for (auto* const peer : peers) { if (peer->blame.test(piece)) { tr_logAddTraceSwarm( this, fmt::format( "peer {} contributed to corrupt piece ({}); now has {} strikes", peer->display_name(), piece, peer->strikes + 1)); add_strike(peer); } } tr_announcerAddBytes(tor, TR_ANN_CORRUPT, byte_count); } void on_got_metainfo() { // the webseed list may have changed... rebuild_webseeds(); // some peer_msgs' progress fields may not be accurate if we // didn't have the metadata before now... so refresh them all... for (auto* peer : peers) { peer->on_torrent_got_metainfo(); if (peer->is_seed()) { mark_peer_as_seed(*peer->peer_info); } } } void on_torrent_started(); void on_torrent_stopped(); // --- static void peer_callback_webseed(tr_peer* const peer, tr_peer_event const& event, void* const vs) { TR_ASSERT(peer != nullptr); auto* s = static_cast(vs); auto const lock = s->unique_lock(); switch (event.type) { case tr_peer_event::Type::ClientGotPieceData: on_client_got_piece_data(s->tor, event.length, tr_time()); break; default: peer_callback_common(peer, event, s); break; } } static void peer_callback_common(tr_peer* const peer, tr_peer_event const& event, tr_swarm* const s) { switch (event.type) { case tr_peer_event::Type::ClientGotRej: s->active_requests.remove(s->tor->piece_loc(event.pieceIndex, event.offset).block, peer); break; case tr_peer_event::Type::ClientGotBlock: { auto* const tor = s->tor; auto const loc = tor->piece_loc(event.pieceIndex, event.offset); s->cancel_all_requests_for_block(loc.block, peer); peer->blocks_sent_to_client.add(tr_time(), 1); tor->on_block_received(loc.block); s->got_block.emit(tor, event.pieceIndex, loc.block); } break; case tr_peer_event::Type::Error: if (event.err == ERANGE || event.err == EMSGSIZE || event.err == ENOTCONN) { /* some protocol error from the peer */ peer->do_purge = true; tr_logAddDebugSwarm( s, fmt::format( "setting {} do_purge flag because we got [({}) {}]", peer->display_name(), event.err, tr_strerror(event.err))); } else { tr_logAddDebugSwarm(s, fmt::format("unhandled error: ({}) {}", event.err, tr_strerror(event.err))); } break; default: TR_ASSERT_MSG(false, "This should be unreachable code"); break; } } static void on_client_got_piece_data(tr_torrent* const tor, uint32_t const sent_length, time_t const now) { tor->bytes_downloaded_ += sent_length; tor->set_date_active(now); tor->session->add_downloaded(sent_length); } void on_got_port(tr_peerMsgs* const msgs, tr_peer_event const& event) { auto info_this = msgs->peer_info; TR_ASSERT(info_this->is_connected()); TR_ASSERT(info_this->listen_port() != event.port); // we already know about this peer if (auto it_that = connectable_pool.find({ info_this->listen_address(), event.port }); it_that != std::end(connectable_pool)) { auto const info_that = it_that->second; TR_ASSERT(it_that->first == info_that->listen_socket_address()); TR_ASSERT(it_that->first.address() == info_this->listen_address()); TR_ASSERT(it_that->first.port() != info_this->listen_port()); // if there is an existing connection to this peer, keep the better one if (info_that->is_connected() && on_got_port_duplicate_connection(msgs, info_that)) { goto EXIT; // NOLINT cppcoreguidelines-avoid-goto } // merge the peer info objects info_this->merge(*info_that); // info_that will be replaced by info_this later, so decrement stat --stats.known_peer_from_count[info_that->from_first()]; } // we are going to insert a brand-new peer info object to the pool else if (std::empty(info_this->listen_port())) { info_this->set_connectable(); } // erase the old peer info entry stats.known_peer_from_count[info_this->from_first()] -= connectable_pool.erase(info_this->listen_socket_address()); // set new listen port info_this->set_listen_port(event.port); // insert or replace the peer info ptr at the target location ++stats.known_peer_from_count[info_this->from_first()]; connectable_pool.insert_or_assign(info_this->listen_socket_address(), std::move(info_this)); EXIT: mark_all_seeds_flag_dirty(); } bool on_got_port_duplicate_connection(tr_peerMsgs* const msgs, std::shared_ptr info_that) { auto const info_this = msgs->peer_info; TR_ASSERT(info_that->is_connected()); if (CompareAtomsByUsefulness(*info_this, *info_that)) { auto const it = std::find_if( std::begin(peers), std::end(peers), [&info_that](tr_peerMsgs const* const peer) { return peer->peer_info == info_that; }); TR_ASSERT(it != std::end(peers)); (*it)->do_purge = true; return false; } info_that->merge(*info_this); msgs->do_purge = true; stats.known_peer_from_count[info_this->from_first()] -= connectable_pool.erase(info_this->listen_socket_address()); return true; } // --- // number of bad pieces a peer is allowed to send before we ban them static auto constexpr MaxBadPiecesPerPeer = 5; // how long we'll let requests we've made linger before we cancel them static auto constexpr RequestTtlSecs = 90; std::array const tags_; mutable std::optional pool_is_all_seeds_; bool is_endgame_ = false; }; bool tr_swarm::WishlistMediator::client_has_block(tr_block_index_t block) const { return tor_.has_block(block); } bool tr_swarm::WishlistMediator::client_wants_piece(tr_piece_index_t piece) const { return tor_.piece_is_wanted(piece); } bool tr_swarm::WishlistMediator::is_endgame() const { return swarm_.is_endgame(); } bool tr_swarm::WishlistMediator::is_sequential_download() const { return tor_.is_sequential_download(); } size_t tr_swarm::WishlistMediator::count_active_requests(tr_block_index_t block) const { return swarm_.active_requests.count(block); } size_t tr_swarm::WishlistMediator::count_missing_blocks(tr_piece_index_t piece) const { return tor_.count_missing_blocks_in_piece(piece); } size_t tr_swarm::WishlistMediator::count_piece_replication(tr_piece_index_t piece) const { return std::accumulate( std::begin(swarm_.peers), std::end(swarm_.peers), size_t{}, [piece](size_t acc, tr_peer* peer) { return acc + (peer->has_piece(piece) ? 1U : 0U); }); } tr_block_span_t tr_swarm::WishlistMediator::block_span(tr_piece_index_t piece) const { return tor_.block_span_for_piece(piece); } tr_piece_index_t tr_swarm::WishlistMediator::piece_count() const { return tor_.piece_count(); } tr_priority_t tr_swarm::WishlistMediator::priority(tr_piece_index_t piece) const { return tor_.piece_priority(piece); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_peer_disconnect( libtransmission::SimpleObservable::Observer observer) { return swarm_.peer_disconnect.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_got_bitfield( libtransmission::SimpleObservable::Observer observer) { return swarm_.got_bitfield.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_got_block( libtransmission::SimpleObservable::Observer observer) { return swarm_.got_block.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_got_have( libtransmission::SimpleObservable::Observer observer) { return swarm_.got_have.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_got_have_all( libtransmission::SimpleObservable::Observer observer) { return swarm_.got_have_all.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_piece_completed( libtransmission::SimpleObservable::Observer observer) { return tor_.piece_completed_.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_priority_changed( libtransmission::SimpleObservable::Observer observer) { return tor_.priority_changed_.observe(std::move(observer)); } libtransmission::ObserverTag tr_swarm::WishlistMediator::observe_sequential_download_changed( libtransmission::SimpleObservable::Observer observer) { return tor_.sequential_download_changed_.observe(std::move(observer)); } // --- struct tr_peerMgr { private: static auto constexpr BandwidthTimerPeriod = 500ms; static auto constexpr PeerInfoPeriod = 1min; static auto constexpr RechokePeriod = 10s; static auto constexpr RefillUpkeepPeriod = 10s; // Max number of outbound peer connections to initiate. // This throttle is an arbitrary number to avoid overloading routers. static auto constexpr MaxConnectionsPerSecond = size_t{ 18U }; static auto constexpr MaxConnectionsPerPulse = size_t(MaxConnectionsPerSecond * BandwidthTimerPeriod / 1s); // Building a peer candidate list is expensive, so cache it across pulses. // We want to cache it long enough to avoid excess CPU cycles, // but short enough that the data isn't too stale. static auto constexpr OutboundCandidatesListTtl = BandwidthTimerPeriod * 4U; // How big the candidate list should be when we create it. static auto constexpr OutboundCandidateListCapacity = MaxConnectionsPerPulse * OutboundCandidatesListTtl / BandwidthTimerPeriod; public: // The peers we might try connecting to in the next few seconds. // This list is cached between pulses so use resilient keys, e.g. // a `tr_torrent_id_t` instead of a `tr_torrent*` that can be freed. using OutboundCandidates = small:: max_size_vector, OutboundCandidateListCapacity>; explicit tr_peerMgr( tr_session* session_in, libtransmission::TimerMaker& timer_maker, tr_torrents& torrents, libtransmission::Blocklists& blocklist) : session{ session_in } , torrents_{ torrents } , blocklists_{ blocklist } , handshake_mediator_{ *session, timer_maker, torrents } , bandwidth_timer_{ timer_maker.create([this]() { bandwidth_pulse(); }) } , peer_info_timer_{ timer_maker.create([this]() { peer_info_pulse(); }) } , rechoke_timer_{ timer_maker.create([this]() { rechoke_pulse_marshall(); }) } , refill_upkeep_timer_{ timer_maker.create([this]() { refill_upkeep(); }) } , blocklists_tag_{ blocklist.observe_changes([this]() { on_blocklists_changed(); }) } { bandwidth_timer_->start_repeating(BandwidthTimerPeriod); peer_info_timer_->start_repeating(PeerInfoPeriod); rechoke_timer_->start_repeating(RechokePeriod); refill_upkeep_timer_->start_repeating(RefillUpkeepPeriod); } tr_peerMgr(tr_peerMgr&&) = delete; tr_peerMgr(tr_peerMgr const&) = delete; tr_peerMgr& operator=(tr_peerMgr&&) = delete; tr_peerMgr& operator=(tr_peerMgr const&) = delete; [[nodiscard]] auto unique_lock() const { return session->unique_lock(); } ~tr_peerMgr() { auto const lock = unique_lock(); incoming_handshakes.clear(); } void rechokeSoon() noexcept { rechoke_timer_->set_interval(100ms); } [[nodiscard]] tr_swarm* get_existing_swarm(tr_sha1_digest_t const& hash) const { auto* const tor = torrents_.get(hash); return tor == nullptr ? nullptr : tor->swarm; } tr_session* const session; tr_torrents& torrents_; libtransmission::Blocklists const& blocklists_; Handshakes incoming_handshakes; HandshakeMediator handshake_mediator_; private: void bandwidth_pulse(); void make_new_peer_connections(); void peer_info_pulse(); void rechoke_pulse() const; void reconnect_pulse(); void refill_upkeep() const; void rechoke_pulse_marshall() { rechoke_pulse(); rechoke_timer_->set_interval(RechokePeriod); } void on_blocklists_changed() const { /* we cache whether or not a peer is blocklisted... since the blocklist has changed, erase that cached value */ for (auto* const tor : torrents_) { for (auto const& [socket_address, peer_info] : tor->swarm->connectable_pool) { peer_info->set_blocklisted_dirty(); } for (auto* const peer : tor->swarm->peers) { peer->peer_info->set_blocklisted_dirty(); } } } OutboundCandidates outbound_candidates_; std::unique_ptr const bandwidth_timer_; std::unique_ptr const peer_info_timer_; std::unique_ptr const rechoke_timer_; std::unique_ptr const refill_upkeep_timer_; libtransmission::ObserverTag const blocklists_tag_; }; // --- tr_peer virtual functions tr_peer::tr_peer(tr_torrent const& tor) : session{ tor.session } , swarm{ tor.swarm } , blame{ tor.block_count() } { } tr_peer::~tr_peer() { if (swarm != nullptr) { swarm->active_requests.remove(this); } } // --- tr_peerMgr* tr_peerMgrNew(tr_session* session) { return new tr_peerMgr{ session, session->timerMaker(), session->torrents(), session->blocklist() }; } void tr_peerMgrFree(tr_peerMgr* manager) { delete manager; } // --- /** * REQUESTS * * There are two data structures associated with managing block requests: * * 1. tr_swarm::active_requests, an opaque class that tracks what requests * we currently have, i.e. which blocks and from which peers. * This is used for cancelling requests that have been waiting * for too long and avoiding duplicate requests. * * 2. tr_swarm::wishlist, a class that tracks the pieces that we want to * request. It's used to decide which blocks to return next when * tr_peerMgrGetNextRequests() is called. */ // --- struct block_request // TODO: if we keep this, add equivalent API to ActiveRequest void tr_peerMgrClientSentRequests(tr_torrent* torrent, tr_peer* peer, tr_block_span_t span) { auto const now = tr_time(); for (tr_block_index_t block = span.begin; block < span.end; ++block) { torrent->swarm->active_requests.add(block, peer, now); } } std::vector tr_peerMgrGetNextRequests(tr_torrent* torrent, tr_peer const* peer, size_t numwant) { TR_ASSERT(!torrent->is_done()); tr_swarm& swarm = *torrent->swarm; if (!swarm.wishlist) { swarm.wishlist = std::make_unique(std::make_unique(swarm)); } swarm.update_endgame(); return swarm.wishlist->next( numwant, [peer](tr_piece_index_t p) { return peer->has_piece(p); }, [peer, &swarm](tr_block_index_t b) { return swarm.active_requests.has(b, peer); }); } // --- Piece List Manipulation / Accessors bool tr_peerMgrDidPeerRequest(tr_torrent const* tor, tr_peer const* peer, tr_block_index_t block) { return tor->swarm->active_requests.has(block, peer); } size_t tr_peerMgrCountActiveRequestsToPeer(tr_torrent const* tor, tr_peer const* peer) { return tor->swarm->active_requests.count(peer); } void tr_peerMgr::refill_upkeep() const { auto const lock = unique_lock(); for (auto* const tor : torrents_) { tor->swarm->cancel_old_requests(); } } namespace { namespace handshake_helpers { void create_bit_torrent_peer( tr_torrent& tor, std::shared_ptr io, std::shared_ptr peer_info, tr_interned_string client) { TR_ASSERT(peer_info); TR_ASSERT(tor.swarm != nullptr); tr_swarm* swarm = tor.swarm; auto* const msgs = tr_peerMsgs::create(tor, std::move(peer_info), std::move(io), client, &tr_swarm::peer_callback_bt, swarm); swarm->peers.push_back(msgs); ++swarm->stats.peer_count; ++swarm->stats.peer_from_count[msgs->peer_info->from_first()]; TR_ASSERT(swarm->stats.peer_count == swarm->peerCount()); TR_ASSERT(swarm->stats.peer_from_count[msgs->peer_info->from_first()] <= swarm->stats.peer_count); } /* FIXME: this is kind of a mess. */ [[nodiscard]] bool on_handshake_done(tr_peerMgr* const manager, tr_handshake::Result const& result) { auto const lock = manager->unique_lock(); TR_ASSERT(result.io != nullptr); auto const& socket_address = result.io->socket_address(); auto* const swarm = manager->get_existing_swarm(result.io->torrent_hash()); auto info = swarm != nullptr ? swarm->get_existing_peer_info(socket_address) : std::shared_ptr{}; if (result.io->is_incoming()) { manager->incoming_handshakes.erase(socket_address); } else if (info) { info->destroy_handshake(); } if (!result.is_connected || swarm == nullptr || !swarm->is_running) { if (info && !info->is_connected()) { info->on_connection_failed(); if (!result.read_anything_from_peer) { tr_logAddTraceSwarm( swarm, fmt::format( "marking peer {} as unreachable... num_fails is {}", info->display_name(), info->connection_failure_count())); info->set_connectable(false); } } return false; } if (result.io->is_incoming()) { info = std::make_shared(socket_address.address(), 0U, TR_PEER_FROM_INCOMING); } if (!info) { return false; } if (!result.io->is_incoming()) { info->set_connectable(); } // If we're connected via µTP, then we know the peer supports µTP... if (result.io->is_utp()) { info->set_utp_supported(); } if (info->is_banned()) { tr_logAddTraceSwarm(swarm, fmt::format("banned peer {} tried to reconnect", info->display_name())); return false; } if (swarm->peerCount() >= swarm->tor->peer_limit()) // too many peers already { return false; } if (info->is_connected()) // we're already connected to this peer; do nothing { return false; } auto client = tr_interned_string{}; if (result.peer_id) { auto buf = std::array{}; tr_clientForId(std::data(buf), sizeof(buf), *result.peer_id); client = tr_interned_string{ tr_quark_new(std::data(buf)) }; } result.io->set_bandwidth(&swarm->tor->bandwidth()); create_bit_torrent_peer(*swarm->tor, result.io, std::move(info), client); return true; } } // namespace handshake_helpers } // namespace void tr_peerMgrAddIncoming(tr_peerMgr* manager, tr_peer_socket&& socket) { using namespace handshake_helpers; auto const lock = manager->unique_lock(); if (manager->blocklists_.contains(socket.address())) { tr_logAddTrace(fmt::format("Banned IP address '{}' tried to connect to us", socket.display_name())); socket.close(); } else if (manager->incoming_handshakes.count(socket.socket_address()) != 0U) { socket.close(); } else // we don't have a connection to them yet... { auto const socket_address = socket.socket_address(); auto* const session = manager->session; manager->incoming_handshakes.try_emplace( socket_address, &manager->handshake_mediator_, tr_peerIo::new_incoming(session, &session->top_bandwidth_, std::move(socket)), session->encryptionMode(), [manager](tr_handshake::Result const& result) { return on_handshake_done(manager, result); }); } } size_t tr_peerMgrAddPex(tr_torrent* tor, tr_peer_from from, tr_pex const* pex, size_t n_pex) { size_t n_used = 0; tr_swarm* s = tor->swarm; auto const lock = s->manager->unique_lock(); for (tr_pex const* const end = pex + n_pex; pex != end; ++pex) { if (tr_isPex(pex) && /* safeguard against corrupt data */ !s->manager->blocklists_.contains(pex->socket_address.address()) && pex->is_valid_for_peers(from) && from != TR_PEER_FROM_INCOMING && (from != TR_PEER_FROM_PEX || (pex->flags & ADDED_F_CONNECTABLE) != 0)) { // we store this peer since it is supposedly connectable (socket address should be the peer's listening address) // don't care about non-connectable peers that we are not connected to s->ensure_info_exists(pex->socket_address, pex->flags, from); ++n_used; } } return n_used; } std::vector tr_pex::from_compact_ipv4( void const* compact, size_t compact_len, uint8_t const* added_f, size_t added_f_len) { size_t const n = compact_len / tr_socket_address::CompactSockAddrBytes[TR_AF_INET]; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { std::tie(pex[i].socket_address, walk) = tr_socket_address::from_compact_ipv4(walk); if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } std::vector tr_pex::from_compact_ipv6( void const* compact, size_t compact_len, uint8_t const* added_f, size_t added_f_len) { size_t const n = compact_len / tr_socket_address::CompactSockAddrBytes[TR_AF_INET6]; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { std::tie(pex[i].socket_address, walk) = tr_socket_address::from_compact_ipv6(walk); if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } // --- namespace { namespace get_peers_helpers { [[nodiscard]] bool is_peer_interesting(tr_torrent const* tor, tr_peer_info const& info) { if (tor->is_done() && info.is_seed()) { return false; } if (info.is_in_use()) { return true; } if (info.is_blocklisted(tor->session->blocklist())) { return false; } if (info.is_banned()) { return false; } return true; } } // namespace get_peers_helpers } // namespace std::vector tr_peerMgrGetPeers(tr_torrent const* tor, uint8_t address_type, uint8_t list_mode, size_t max_peer_count) { using namespace get_peers_helpers; TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(address_type == TR_AF_INET || address_type == TR_AF_INET6); TR_ASSERT(list_mode == TR_PEERS_CONNECTED || list_mode == TR_PEERS_INTERESTING); tr_swarm const* s = tor->swarm; // build a list of peer info objects auto infos = std::vector{}; if (list_mode == TR_PEERS_CONNECTED) /* connected peers only */ { auto const& peers = s->peers; infos.reserve(std::size(peers)); for (auto const* peer : peers) { if (peer->socket_address().address().type == address_type) { infos.emplace_back(peer->peer_info.get()); } } } else /* TR_PEERS_INTERESTING */ { auto const& pool = s->connectable_pool; infos.reserve(std::size(pool)); for (auto const& [socket_address, peer_info] : pool) { TR_ASSERT(socket_address == peer_info->listen_socket_address()); if (socket_address.address().type == address_type && is_peer_interesting(tor, *peer_info)) { infos.emplace_back(peer_info.get()); } } } // add the N most useful peers into our return list auto const n = std::min(std::size(infos), max_peer_count); auto pex = std::vector{}; pex.reserve(n); std::partial_sort(std::begin(infos), std::begin(infos) + n, std::end(infos), CompareAtomsByUsefulness); infos.resize(n); for (auto const* const info : infos) { auto const& socket_address = info->listen_socket_address(); [[maybe_unused]] auto const& addr = socket_address.address(); TR_ASSERT(addr.is_valid()); TR_ASSERT(addr.type == address_type); pex.emplace_back(socket_address, info->pex_flags()); } std::sort(std::begin(pex), std::end(pex)); return pex; } void tr_swarm::on_torrent_started() { auto const lock = unique_lock(); is_running = true; manager->rechokeSoon(); } void tr_swarm::on_torrent_stopped() { stop(); } void tr_peerMgrAddTorrent(tr_peerMgr* manager, tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(tor->swarm == nullptr); tor->swarm = new tr_swarm{ manager, tor }; } int8_t tr_peerMgrPieceAvailability(tr_torrent const* tor, tr_piece_index_t piece) { if (!tor->has_metainfo()) { return 0; } if (tor->is_seed() || tor->has_piece(piece)) { return -1; } auto const& peers = tor->swarm->peers; return std::count_if(std::begin(peers), std::end(peers), [piece](auto const* peer) { return peer->has_piece(piece); }); } void tr_peerMgrTorrentAvailability(tr_torrent const* tor, int8_t* tab, unsigned int n_tabs) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tab != nullptr); TR_ASSERT(n_tabs > 0); std::fill_n(tab, n_tabs, int8_t{}); auto const interval = tor->piece_count() / static_cast(n_tabs); for (tr_piece_index_t i = 0; i < n_tabs; ++i) { auto const piece = static_cast(i * interval); tab[i] = tr_peerMgrPieceAvailability(tor, piece); } } tr_swarm_stats tr_swarmGetStats(tr_swarm const* const swarm) { TR_ASSERT(swarm != nullptr); auto count_active_peers = [&swarm](tr_direction dir) { return std::count_if( std::begin(swarm->peers), std::end(swarm->peers), [dir](auto const& peer) { return peer->is_active(dir); }); }; auto& stats = swarm->stats; stats.active_peer_count[TR_UP] = count_active_peers(TR_UP); stats.active_peer_count[TR_DOWN] = count_active_peers(TR_DOWN); stats.active_webseed_count = swarm->count_active_webseeds(tr_time_msec()); return stats; } /* count how many bytes we want that connected peers have */ uint64_t tr_peerMgrGetDesiredAvailable(tr_torrent const* tor) { TR_ASSERT(tr_isTorrent(tor)); // common shortcuts... if (!tor->is_running() || tor->is_stopping() || tor->is_done() || !tor->has_metainfo()) { return 0; } tr_swarm const* const swarm = tor->swarm; if (swarm == nullptr || std::empty(swarm->peers)) { return 0; } auto available = swarm->peers.front()->has(); for (auto const* const peer : swarm->peers) { available |= peer->has(); } if (available.has_all()) { return tor->left_until_done(); } auto desired_available = uint64_t{}; for (tr_piece_index_t i = 0, n = tor->piece_count(); i < n; ++i) { if (tor->piece_is_wanted(i) && available.test(i)) { desired_available += tor->count_missing_bytes_in_piece(i); } } TR_ASSERT(desired_available <= tor->total_size()); return desired_available; } tr_webseed_view tr_peerMgrWebseed(tr_torrent const* tor, size_t i) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm != nullptr); size_t const n = std::size(tor->swarm->webseeds); TR_ASSERT(i < n); return i >= n ? tr_webseed_view{} : tor->swarm->webseeds[i]->get_view(); } namespace { namespace peer_stat_helpers { [[nodiscard]] auto get_peer_stats(tr_peerMsgs const* peer, time_t now, uint64_t now_msec) { auto stats = tr_peer_stat{}; auto const [addr, port] = peer->socket_address(); addr.display_name(stats.addr, sizeof(stats.addr)); stats.client = peer->user_agent().c_str(); stats.port = port.host(); stats.from = peer->peer_info->from_first(); stats.progress = peer->percent_done(); stats.isUTP = peer->is_utp_connection(); stats.isEncrypted = peer->is_encrypted(); stats.rateToPeer_KBps = peer->get_piece_speed(now_msec, TR_CLIENT_TO_PEER).count(Speed::Units::KByps); stats.rateToClient_KBps = peer->get_piece_speed(now_msec, TR_PEER_TO_CLIENT).count(Speed::Units::KByps); stats.peerIsChoked = peer->peer_is_choked(); stats.peerIsInterested = peer->peer_is_interested(); stats.clientIsChoked = peer->client_is_choked(); stats.clientIsInterested = peer->client_is_interested(); stats.isIncoming = peer->is_incoming_connection(); stats.isDownloadingFrom = peer->is_active(TR_PEER_TO_CLIENT); stats.isUploadingTo = peer->is_active(TR_CLIENT_TO_PEER); stats.isSeed = peer->is_seed(); stats.blocksToPeer = peer->blocks_sent_to_peer.count(now, CancelHistorySec); stats.blocksToClient = peer->blocks_sent_to_client.count(now, CancelHistorySec); stats.cancelsToPeer = peer->cancels_sent_to_peer.count(now, CancelHistorySec); stats.cancelsToClient = peer->cancels_sent_to_client.count(now, CancelHistorySec); stats.activeReqsToPeer = peer->active_req_count(TR_CLIENT_TO_PEER); stats.activeReqsToClient = peer->active_req_count(TR_PEER_TO_CLIENT); char* pch = stats.flagStr; if (stats.isUTP) { *pch++ = 'T'; } if (peer->swarm->optimistic == peer) { *pch++ = 'O'; } if (stats.isDownloadingFrom) { *pch++ = 'D'; } else if (stats.clientIsInterested) { *pch++ = 'd'; } if (stats.isUploadingTo) { *pch++ = 'U'; } else if (stats.peerIsInterested) { *pch++ = 'u'; } if (!stats.clientIsChoked && !stats.clientIsInterested) { *pch++ = 'K'; } if (!stats.peerIsChoked && !stats.peerIsInterested) { *pch++ = '?'; } if (stats.isEncrypted) { *pch++ = 'E'; } if (stats.from == TR_PEER_FROM_DHT) { *pch++ = 'H'; } else if (stats.from == TR_PEER_FROM_PEX) { *pch++ = 'X'; } if (stats.isIncoming) { *pch++ = 'I'; } *pch = '\0'; return stats; } } // namespace peer_stat_helpers } // namespace tr_peer_stat* tr_peerMgrPeerStats(tr_torrent const* tor, size_t* setme_count) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm->manager != nullptr); auto const peers = tor->swarm->peers; auto const n = std::size(peers); auto* const ret = new tr_peer_stat[n]; // TODO: re-implement as a callback solution (similar to tr_sessionSetCompletenessCallback) in case present call to run_in_session_thread is causing hangs when the peers info window is displayed. auto done_promise = std::promise{}; auto done_future = done_promise.get_future(); tor->session->run_in_session_thread( [&peers, &ret, &done_promise]() { auto const now = tr_time(); auto const now_msec = tr_time_msec(); std::transform( std::begin(peers), std::end(peers), ret, [&now, &now_msec](auto const* peer) { return peer_stat_helpers::get_peer_stats(peer, now, now_msec); }); done_promise.set_value(); }); done_future.wait(); *setme_count = n; return ret; } namespace { namespace update_interest_helpers { /* does this peer have any pieces that we want? */ [[nodiscard]] bool isPeerInteresting( tr_torrent const* const tor, std::vector const& piece_is_interesting, tr_peerMsgs const* const peer) { /* these cases should have already been handled by the calling code... */ TR_ASSERT(!tor->is_done()); TR_ASSERT(tor->client_can_download()); if (peer->is_seed()) { return true; } for (tr_piece_index_t i = 0; i < tor->piece_count(); ++i) { if (piece_is_interesting[i] && peer->has_piece(i)) { return true; } } return false; } // determine which peers to show interest in void updateInterest(tr_swarm* swarm) { // sometimes this function isn't necessary auto const* const tor = swarm->tor; if (tor->is_done() || !tor->client_can_download()) { return; } if (auto const& peers = swarm->peers; !std::empty(peers)) { auto const n = tor->piece_count(); // build a bitfield of interesting pieces... auto piece_is_interesting = std::vector(n); for (tr_piece_index_t i = 0U; i < n; ++i) { piece_is_interesting[i] = tor->piece_is_wanted(i) && !tor->has_piece(i); } for (auto* const peer : peers) { peer->set_interested(isPeerInteresting(tor, piece_is_interesting, peer)); } } } } // namespace update_interest_helpers } // namespace // --- namespace { namespace rechoke_uploads_helpers { struct ChokeData { ChokeData(tr_peerMsgs* msgs, Speed rate, uint8_t salt, bool is_interested, bool was_choked, bool is_choked) : msgs_{ msgs } , rate_{ rate } , salt_{ salt } , is_interested_{ is_interested } , was_choked_{ was_choked } , is_choked_{ is_choked } { } tr_peerMsgs* msgs_; Speed rate_; uint8_t salt_; bool is_interested_; bool was_choked_; bool is_choked_; [[nodiscard]] constexpr auto compare(ChokeData const& that) const noexcept // <=> { // prefer higher overall speeds if (auto const val = tr_compare_3way(rate_, that.rate_); val != 0) { return -val; } if (was_choked_ != that.was_choked_) // prefer unchoked { return was_choked_ ? 1 : -1; } return tr_compare_3way(salt_, that.salt_); } [[nodiscard]] constexpr auto operator<(ChokeData const& that) const noexcept { return compare(that) < 0; } }; /* get a rate for deciding which peers to choke and unchoke. */ [[nodiscard]] auto get_rate(tr_torrent const* tor, tr_peer const* peer, uint64_t now) { if (tor->is_done()) { return peer->get_piece_speed(now, TR_CLIENT_TO_PEER); } // downloading a private torrent... take upload speed into account // because there may only be a small window of opportunity to share if (tor->is_private()) { return peer->get_piece_speed(now, TR_PEER_TO_CLIENT) + peer->get_piece_speed(now, TR_CLIENT_TO_PEER); } // downloading a public torrent return peer->get_piece_speed(now, TR_PEER_TO_CLIENT); } // an optimistically unchoked peer is immune from rechoking // for this many calls to rechokeUploads(). auto constexpr OptimisticUnchokeMultiplier = uint8_t{ 4 }; void rechokeUploads(tr_swarm* s, uint64_t const now) { auto const lock = s->unique_lock(); auto& peers = s->peers; auto const peer_count = std::size(peers); auto choked = std::vector{}; choked.reserve(peer_count); auto const* const session = s->manager->session; bool const choke_all = !s->tor->client_can_upload(); bool const is_maxed_out = s->tor->bandwidth().is_maxed_out(TR_UP, now); /* an optimistic unchoke peer's "optimistic" * state lasts for N calls to rechokeUploads(). */ if (s->optimistic_unchoke_time_scaler > 0) { --s->optimistic_unchoke_time_scaler; } else { s->optimistic = nullptr; } /* sort the peers by preference and rate */ auto salter = tr_salt_shaker{}; for (auto* const peer : peers) { if (peer->is_seed()) { /* choke seeds and partial seeds */ peer->set_choke(true); } else if (choke_all) { /* choke everyone if we're not uploading */ peer->set_choke(true); } else if (peer != s->optimistic) { choked.emplace_back( peer, get_rate(s->tor, peer, now), salter(), peer->peer_is_interested(), peer->peer_is_choked(), true); } } std::sort(std::begin(choked), std::end(choked)); /** * Reciprocation and number of uploads capping is managed by unchoking * the N peers which have the best upload rate and are interested. * This maximizes the client's download rate. These N peers are * referred to as downloaders, because they are interested in downloading * from the client. * * Peers which have a better upload rate (as compared to the downloaders) * but aren't interested get unchoked. If they become interested, the * downloader with the worst upload rate gets choked. If a client has * a complete file, it uses its upload rate rather than its download * rate to decide which peers to unchoke. * * If our bandwidth is maxed out, don't unchoke any more peers. */ auto checked_choke_count = size_t{ 0U }; auto unchoked_interested = size_t{ 0U }; for (auto& item : choked) { if (unchoked_interested >= session->uploadSlotsPerTorrent()) { break; } item.is_choked_ = is_maxed_out ? item.was_choked_ : false; ++checked_choke_count; if (item.is_interested_) { ++unchoked_interested; } } /* optimistic unchoke */ if (s->optimistic == nullptr && !is_maxed_out && checked_choke_count < std::size(choked)) { auto rand_pool = std::vector{}; for (auto i = checked_choke_count, n = std::size(choked); i < n; ++i) { if (choked[i].is_interested_) { rand_pool.push_back(&choked[i]); } } if (auto const n = std::size(rand_pool); n != 0) { auto* c = rand_pool[tr_rand_int(n)]; c->is_choked_ = false; s->optimistic = c->msgs_; s->optimistic_unchoke_time_scaler = OptimisticUnchokeMultiplier; } } for (auto& item : choked) { item.msgs_->set_choke(item.is_choked_); } } } // namespace rechoke_uploads_helpers } // namespace void tr_peerMgr::rechoke_pulse() const { using namespace update_interest_helpers; using namespace rechoke_uploads_helpers; auto const lock = unique_lock(); auto const now = tr_time_msec(); for (auto* const tor : torrents_) { if (tor->is_running()) { // possibly stop torrents that have seeded enough tor->stop_if_seed_limit_reached(); } if (tor->is_running()) { if (auto* const swarm = tor->swarm; swarm->stats.peer_count > 0) { rechokeUploads(swarm, now); updateInterest(swarm); } } } } // --- Life and Death namespace { namespace disconnect_helpers { // when many peers are available, keep idle ones this long auto constexpr MinUploadIdleSecs = time_t{ 60 }; // when few peers are available, keep idle ones this long auto constexpr MaxUploadIdleSecs = time_t{ 60 * 5 }; [[nodiscard]] bool shouldPeerBeClosed(tr_swarm const* s, tr_peerMsgs const* peer, size_t peer_count, time_t const now) { /* if it's marked for purging, close it */ if (peer->do_purge) { tr_logAddTraceSwarm(s, fmt::format("purging peer {} because its do_purge flag is set", peer->display_name())); return true; } auto const* tor = s->tor; auto const& info = peer->peer_info; /* disconnect if we're both seeds and enough time has passed for PEX */ if (tor->is_done() && peer->is_seed()) { return !tor->allows_pex() || info->idle_secs(now).value_or(0U) >= 30U; } /* disconnect if it's been too long since piece data has been transferred. * this is on a sliding scale based on number of available peers... */ { auto const relax_strictness_if_fewer_than_n = static_cast(std::lround(tor->peer_limit() * 0.9)); /* if we have >= relaxIfFewerThan, strictness is 100%. * if we have zero connections, strictness is 0% */ float const strictness = peer_count >= relax_strictness_if_fewer_than_n ? 1.0 : peer_count / (float)relax_strictness_if_fewer_than_n; auto const lo = MinUploadIdleSecs; auto const hi = MaxUploadIdleSecs; time_t const limit = hi - (hi - lo) * strictness; if (auto const idle_secs = info->idle_secs(now); idle_secs && *idle_secs > limit) { tr_logAddTraceSwarm( s, fmt::format( "purging peer {} because it's been {} secs since we shared anything", peer->display_name(), *idle_secs)); return true; } } return false; } void close_peer(tr_peerMsgs* peer) { TR_ASSERT(peer != nullptr); peer->swarm->remove_peer(peer); } constexpr struct { [[nodiscard]] static int compare(tr_peerMsgs const* a, tr_peerMsgs const* b) // <=> { if (a->do_purge != b->do_purge) { return a->do_purge ? 1 : -1; } return -a->peer_info->compare_by_piece_data_time(*b->peer_info); } [[nodiscard]] bool operator()(tr_peerMsgs const* a, tr_peerMsgs const* b) const // less than { return compare(a, b) < 0; } } ComparePeerByMostActive{}; constexpr auto ComparePeerByLeastActive = [](tr_peerMsgs const* a, tr_peerMsgs const* b) { return ComparePeerByMostActive(b, a); }; using bad_peers_t = small::vector; bad_peers_t& get_peers_to_close(tr_swarm const* const swarm, time_t const now_sec, bad_peers_t& bad_peers_buf) { auto const& peers = swarm->peers; auto const peer_count = std::size(peers); bad_peers_buf.clear(); bad_peers_buf.reserve(peer_count); for (auto* peer : swarm->peers) { if (shouldPeerBeClosed(swarm, peer, peer_count, now_sec)) { bad_peers_buf.emplace_back(peer); } } return bad_peers_buf; } void close_bad_peers(tr_swarm* s, time_t const now_sec, bad_peers_t& bad_peers_buf) { for (auto* peer : get_peers_to_close(s, now_sec, bad_peers_buf)) { tr_logAddTraceSwarm(peer->swarm, fmt::format("removing bad peer {}", peer->display_name())); close_peer(peer); } } void enforceSwarmPeerLimit(tr_swarm* swarm, size_t max) { // do we have too many peers? auto const n = swarm->peerCount(); if (n <= max) { return; } // close all but the `max` most active auto peers = std::vector(n - max); std::partial_sort_copy( std::begin(swarm->peers), std::end(swarm->peers), std::begin(peers), std::end(peers), ComparePeerByLeastActive); std::for_each(std::begin(peers), std::end(peers), close_peer); } void enforceSessionPeerLimit(size_t global_peer_limit, tr_torrents& torrents) { // if we're under the limit, then no action needed auto const current_size = tr_peerMsgs::size(); if (current_size <= global_peer_limit) { return; } // make a list of all the peers auto peers = std::vector{}; peers.reserve(current_size); for (auto const* const tor : torrents) { peers.insert(std::end(peers), std::begin(tor->swarm->peers), std::end(tor->swarm->peers)); } TR_ASSERT(current_size == std::size(peers)); if (std::size(peers) > global_peer_limit) { std::partial_sort(std::begin(peers), std::begin(peers) + global_peer_limit, std::end(peers), ComparePeerByMostActive); std::for_each(std::begin(peers) + global_peer_limit, std::end(peers), close_peer); } } } // namespace disconnect_helpers } // namespace void tr_peerMgr::reconnect_pulse() { using namespace disconnect_helpers; auto const lock = unique_lock(); auto const now_sec = tr_time(); // remove crappy peers auto bad_peers_buf = bad_peers_t{}; for (auto* const tor : torrents_) { auto* const swarm = tor->swarm; if (!swarm->is_running) { swarm->remove_all_peers(); } else { close_bad_peers(swarm, now_sec, bad_peers_buf); } } // if we're over the per-torrent peer limits, cull some peers for (auto* const tor : torrents_) { if (tor->is_running()) { enforceSwarmPeerLimit(tor->swarm, tor->peer_limit()); } } // if we're over the per-session peer limits, cull some peers enforceSessionPeerLimit(session->peerLimit(), torrents_); // try to make new peer connections make_new_peer_connections(); } // --- Peer Pool Size namespace { namespace peer_info_pulse_helpers { auto get_max_peer_info_count(tr_torrent const& tor) { return tor.is_done() ? tor.peer_limit() : tor.peer_limit() * 3U; } struct ComparePeerInfo { [[nodiscard]] int compare(tr_peer_info const& a, tr_peer_info const& b) const noexcept { auto const is_a_inactive = a.is_inactive(now_); auto const is_b_inactive = b.is_inactive(now_); if (is_a_inactive != is_b_inactive) { return is_a_inactive ? 1 : -1; } return CompareAtomsByUsefulness.compare(a, b); } template [[nodiscard]] std::enable_if_t())>, tr_peer_info>, bool> operator()( T const& a, T const& b) const noexcept { return compare(*a, *b) < 0; } time_t const now_ = tr_time(); }; } // namespace peer_info_pulse_helpers } // namespace void tr_peerMgr::peer_info_pulse() { using namespace peer_info_pulse_helpers; auto const lock = unique_lock(); for (auto const* tor : torrents_) { auto& pool = tor->swarm->connectable_pool; auto const max = get_max_peer_info_count(*tor); auto const pool_size = std::size(pool); if (pool_size <= max) { continue; } auto infos = std::vector>{}; infos.reserve(pool_size); std::transform( std::begin(pool), std::end(pool), std::back_inserter(infos), [](auto const& keyval) { return keyval.second; }); pool.clear(); // Keep all peer info objects before test_begin unconditionally auto const test_begin = std::partition( std::begin(infos), std::end(infos), [](auto const& info) { return info->is_in_use(); }); auto const iter_max = std::begin(infos) + max; if (iter_max > test_begin) { std::partial_sort(test_begin, iter_max, std::end(infos), ComparePeerInfo{}); } infos.erase(std::max(test_begin, iter_max), std::end(infos)); pool.reserve(std::size(infos)); for (auto& info : infos) { pool.try_emplace(info->listen_socket_address(), std::move(info)); } tr_logAddTraceSwarm( tor->swarm, fmt::format("max peer info count is {}... pruned from {} to {}", max, pool_size, std::size(pool))); } } // --- Bandwidth Allocation namespace { namespace bandwidth_helpers { void pumpAllPeers(tr_peerMgr* mgr) { for (auto* const tor : mgr->torrents_) { for (auto* const peer : tor->swarm->peers) { peer->pulse(); } } } } // namespace bandwidth_helpers } // namespace void tr_peerMgr::bandwidth_pulse() { using namespace bandwidth_helpers; auto const lock = unique_lock(); pumpAllPeers(this); // allocate bandwidth to the peers static auto constexpr Msec = std::chrono::duration_cast(BandwidthTimerPeriod).count(); session->top_bandwidth_.allocate(Msec); // torrent upkeep for (auto* const tor : torrents_) { tor->do_idle_work(); } reconnect_pulse(); } // --- namespace { namespace connect_helpers { /* is this atom someone that we'd want to initiate a connection to? */ [[nodiscard]] bool is_peer_candidate(tr_torrent const* tor, tr_peer_info const& peer_info, time_t const now) { // have we already tried and failed to connect? if (auto const conn = peer_info.is_connectable(); conn && !*conn) { return false; } // not if we're both seeds if (tor->is_done() && peer_info.is_seed()) { return false; } // not if we've already got a connection to them... if (peer_info.is_in_use()) { return false; } // not if we just tried them already if (!peer_info.reconnect_interval_has_passed(now)) { return false; } // not if they're blocklisted if (peer_info.is_blocklisted(tor->session->blocklist())) { return false; } // not if they're banned... if (peer_info.is_banned()) { return false; } return true; } [[nodiscard]] constexpr uint64_t addValToKey(uint64_t value, unsigned int width, uint64_t addme) { value <<= width; value |= addme; return value; } /* smaller value is better */ [[nodiscard]] uint64_t getPeerCandidateScore(tr_torrent const* tor, tr_peer_info const& peer_info, uint8_t salt) { auto i = uint64_t{}; auto score = uint64_t{}; /* prefer peers we've connected to, or never tried, over peers we failed to connect to. */ i = peer_info.connection_failure_count() != 0U ? 1U : 0U; score = addValToKey(score, 1U, i); /* prefer the one we attempted least recently (to cycle through all peers) */ i = peer_info.connection_attempt_time(); score = addValToKey(score, 32U, i); /* prefer peers belonging to a torrent of a higher priority */ switch (tor->get_priority()) { case TR_PRI_HIGH: i = 0; break; case TR_PRI_NORMAL: i = 1; break; case TR_PRI_LOW: i = 2; break; default: TR_ASSERT_MSG(false, "invalid priority"); break; } score = addValToKey(score, 4U, i); // prefer recently-started torrents i = tor->started_recently(tr_time()) ? 0 : 1; score = addValToKey(score, 1U, i); /* prefer torrents we're downloading with */ i = tor->is_done() ? 1 : 0; score = addValToKey(score, 1U, i); /* prefer peers that are known to be connectible */ i = peer_info.is_connectable().value_or(false) ? 0 : 1; score = addValToKey(score, 1U, i); /* prefer peers that we might be able to upload to */ i = peer_info.is_seed() ? 0 : 1; score = addValToKey(score, 1U, i); /* Prefer peers that we got from more trusted sources. * lower `fromBest` values indicate more trusted sources */ score = addValToKey(score, 4U, peer_info.from_best()); /* salt */ score = addValToKey(score, 8U, salt); return score; } void get_peer_candidates(size_t global_peer_limit, tr_torrents& torrents, tr_peerMgr::OutboundCandidates& setme) { struct peer_candidate { peer_candidate() = default; peer_candidate(uint64_t score_in, tr_torrent const* const tor_in, tr_peer_info const* const peer_info_in) : score{ score_in } , tor{ tor_in } , peer_info{ peer_info_in } { } uint64_t score; tr_torrent const* tor; tr_peer_info const* peer_info; }; setme.clear(); auto const now = tr_time(); auto const now_msec = tr_time_msec(); // leave 5% of connection slots for incoming connections -- ticket #2609 if (auto const max_candidates = static_cast(global_peer_limit * 0.95); max_candidates <= tr_peerMsgs::size()) { return; } auto candidates = std::vector{}; candidates.reserve(tr_peer_info::known_connectable_count()); /* populate the candidate array */ auto salter = tr_salt_shaker{}; for (auto* const tor : torrents) { auto* const swarm = tor->swarm; if (!swarm->is_running) { continue; } /* if everyone in the swarm is seeds and pex is disabled, * then don't initiate connections */ bool const seeding = tor->is_done(); if (seeding && swarm->is_all_seeds() && !tor->allows_pex()) { continue; } /* if we've already got enough peers in this torrent... */ if (tor->peer_limit() <= swarm->peerCount()) { continue; } /* if we've already got enough speed in this torrent... */ if (seeding && tor->bandwidth().is_maxed_out(TR_UP, now_msec)) { continue; } for (auto const& [socket_address, peer_info] : swarm->connectable_pool) { if (is_peer_candidate(tor, *peer_info, now)) { candidates.emplace_back(getPeerCandidateScore(tor, *peer_info, salter()), tor, peer_info.get()); } } } // only keep the best `max` candidates if (static auto constexpr Max = tr_peerMgr::OutboundCandidates::requested_inline_size; Max < std::size(candidates)) { std::partial_sort( std::begin(candidates), std::begin(candidates) + Max, std::end(candidates), [](auto const& a, auto const& b) { return a.score < b.score; }); candidates.resize(Max); } // put the best candidates at the end of the list for (auto it = std::crbegin(candidates), end = std::crend(candidates); it != end; ++it) { setme.emplace_back(it->tor->id(), it->peer_info->listen_socket_address()); } } void initiate_connection(tr_peerMgr* mgr, tr_swarm* s, tr_peer_info& peer_info) { using namespace handshake_helpers; auto const now = tr_time(); auto const utp = mgr->session->allowsUTP() && peer_info.supports_utp().value_or(true); auto* const session = mgr->session; if (tr_peer_socket::limit_reached(session) || (!utp && !session->allowsTCP())) { return; } tr_logAddTraceSwarm( s, fmt::format("Starting an OUTGOING {} connection with {}", utp ? " µTP" : "TCP", peer_info.display_name())); auto peer_io = tr_peerIo::new_outgoing( session, &session->top_bandwidth_, peer_info.listen_socket_address(), s->tor->info_hash(), s->tor->is_seed(), utp); if (!peer_io) { tr_logAddTraceSwarm(s, fmt::format("peerIo not created; marking peer {} as unreachable", peer_info.display_name())); peer_info.set_connectable(false); peer_info.on_connection_failed(); } else { peer_info.start_handshake( &mgr->handshake_mediator_, peer_io, session->encryptionMode(), [mgr](tr_handshake::Result const& result) { return on_handshake_done(mgr, result); }); } peer_info.set_connection_attempt_time(now); } } // namespace connect_helpers } // namespace void tr_peerMgr::make_new_peer_connections() { using namespace connect_helpers; auto const lock = unique_lock(); // get the candidates if we need to auto& candidates = outbound_candidates_; if (std::empty(candidates)) { get_peer_candidates(session->peerLimit(), torrents_, candidates); } // initiate connections to the last N candidates auto const n_this_pass = std::min(std::size(candidates), MaxConnectionsPerPulse); for (auto it = std::crbegin(candidates), end = std::crbegin(candidates) + n_this_pass; it != end; ++it) { auto const& [tor_id, sock_addr] = *it; if (auto* const tor = torrents_.get(tor_id); tor != nullptr) { if (auto const& peer_info = tor->swarm->get_existing_peer_info(sock_addr)) { initiate_connection(this, tor->swarm, *peer_info); } } } // remove the N candidates that we just consumed candidates.resize(std::size(candidates) - n_this_pass); } void HandshakeMediator::set_utp_failed(tr_sha1_digest_t const& info_hash, tr_socket_address const& socket_address) { if (auto* const tor = torrents_.get(info_hash); tor != nullptr) { if (auto const& peer_info = tor->swarm->get_existing_peer_info(socket_address)) { peer_info->set_utp_supported(false); } } }