// This file Copyright © 2007-2022 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include #include // memmove(), memset() #include #include #include #include #include extern "C" { #include #include } #include "transmission.h" #include "crypto-utils.h" #include "tr-assert.h" #include "utils.h" using namespace std::literals; /*** **** ***/ void tr_dh_align_key(uint8_t* key_buffer, size_t key_size, size_t buffer_size) { TR_ASSERT(key_size <= buffer_size); /* DH can generate key sizes that are smaller than the size of key buffer with exponentially decreasing probability, in which case the msb's of key buffer need to be zeroed appropriately. */ if (key_size < buffer_size) { size_t const offset = buffer_size - key_size; memmove(key_buffer + offset, key_buffer, key_size); memset(key_buffer, 0, offset); } } /*** **** ***/ int tr_rand_int(int upper_bound) { TR_ASSERT(upper_bound > 0); if (unsigned int noise = 0; tr_rand_buffer(&noise, sizeof(noise))) { return noise % upper_bound; } /* fall back to a weaker implementation... */ return tr_rand_int_weak(upper_bound); } int tr_rand_int_weak(int upper_bound) { TR_ASSERT(upper_bound > 0); thread_local auto random_engine = std::mt19937{ std::random_device{}() }; using distribution_type = std::uniform_int_distribution<>; thread_local distribution_type distribution; // Upper bound is inclusive in std::uniform_int_distribution. return distribution(random_engine, distribution_type::param_type{ 0, upper_bound - 1 }); } /*** **** ***/ namespace { auto constexpr DigestStringSize = TR_SHA1_DIGEST_STRLEN; auto constexpr SaltedPrefix = "{"sv; std::string tr_salt(std::string_view plaintext, std::string_view salt) { static_assert(DigestStringSize == 40); // build a sha1 digest of the original content and the salt auto const digest = tr_sha1(plaintext, salt); // convert it to a string. string holds three parts: // DigestPrefix, stringified digest of plaintext + salt, and the salt. return tr_strvJoin(SaltedPrefix, tr_sha1_to_string(*digest), salt); } } // namespace std::string tr_ssha1(std::string_view plaintext) { // build an array of random Salter chars auto constexpr Salter = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ./"sv; static_assert(std::size(Salter) == 64); auto constexpr SaltSize = size_t{ 8 }; auto salt = std::array{}; tr_rand_buffer(std::data(salt), std::size(salt)); std::transform( std::begin(salt), std::end(salt), std::begin(salt), [&Salter](auto ch) { return Salter[ch % std::size(Salter)]; }); return tr_salt(plaintext, std::string_view{ std::data(salt), std::size(salt) }); } bool tr_ssha1_test(std::string_view text) { return tr_strvStartsWith(text, SaltedPrefix) && std::size(text) >= std::size(SaltedPrefix) + DigestStringSize; } bool tr_ssha1_matches(std::string_view ssha1, std::string_view plaintext) { if (!tr_ssha1_test(ssha1)) { return false; } auto const salt = ssha1.substr(std::size(SaltedPrefix) + DigestStringSize); return tr_salt(plaintext, salt) == ssha1; } /*** **** ***/ static size_t base64_alloc_size(std::string_view input) { size_t ret_length = 4 * ((std::size(input) + 2) / 3); #ifdef USE_SYSTEM_B64 // Additional space is needed for newlines if we're using unpatched libb64 ret_length += ret_length / 72 + 1; #endif return ret_length * 8; } std::string tr_base64_encode(std::string_view input) { auto buf = std::vector(base64_alloc_size(input)); auto state = base64_encodestate{}; base64_init_encodestate(&state); size_t len = base64_encode_block(std::data(input), std::size(input), std::data(buf), &state); len += base64_encode_blockend(std::data(buf) + len, &state); auto str = std::string{}; std::copy_if( std::data(buf), std::data(buf) + len, std::back_inserter(str), [](auto ch) { return !tr_strvContains("\r\n"sv, ch); }); return str; } std::string tr_base64_decode(std::string_view input) { auto buf = std::vector(std::size(input) + 8); auto state = base64_decodestate{}; base64_init_decodestate(&state); size_t const len = base64_decode_block(std::data(input), std::size(input), std::data(buf), &state); return std::string{ std::data(buf), len }; } /*** **** ***/ static void tr_binary_to_hex(void const* vinput, void* voutput, size_t byte_length) { static char constexpr Hex[] = "0123456789abcdef"; auto const* input = static_cast(vinput); auto* output = static_cast(voutput); /* go from back to front to allow for in-place conversion */ input += byte_length; output += byte_length * 2; *output = '\0'; while (byte_length-- > 0) { unsigned int const val = *(--input); *(--output) = Hex[val & 0xf]; *(--output) = Hex[val >> 4]; } } std::string tr_sha1_to_string(tr_sha1_digest_t const& digest) { auto str = std::string(std::size(digest) * 2, '?'); tr_binary_to_hex(std::data(digest), std::data(str), std::size(digest)); return str; } static void tr_hex_to_binary(char const* input, void* voutput, size_t byte_length) { static char constexpr Hex[] = "0123456789abcdef"; auto* output = static_cast(voutput); for (size_t i = 0; i < byte_length; ++i) { int const hi = strchr(Hex, tolower(*input++)) - Hex; int const lo = strchr(Hex, tolower(*input++)) - Hex; *output++ = (uint8_t)((hi << 4) | lo); } } std::optional tr_sha1_from_string(std::string_view hex) { if (std::size(hex) != TR_SHA1_DIGEST_STRLEN) { return {}; } if (!std::all_of(std::begin(hex), std::end(hex), [](unsigned char ch) { return isxdigit(ch); })) { return {}; } auto digest = tr_sha1_digest_t{}; tr_hex_to_binary(std::data(hex), std::data(digest), std::size(digest)); return digest; }