// This file Copyright © 2017-2022 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include #include #include #include #include #include "transmission.h" #include "bitfield.h" #include "clients.h" #include "crypto-utils.h" #include "handshake.h" #include "log.h" #include "peer-io.h" #include "timer.h" #include "tr-assert.h" #include "tr-buffer.h" #include "utils.h" #define tr_logAddTraceHand(handshake, msg) tr_logAddTrace(msg, (handshake)->peer_io_->display_name()) using namespace std::literals; using DH = tr_message_stream_encryption::DH; bool tr_handshake::build_handshake_message(tr_peerIo* io, uint8_t* buf) const { auto const& info_hash = io->torrent_hash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "build_handshake_message requires an info_hash"); auto const info = mediator_->torrent(info_hash); if (!info) { return false; } auto flags = tr_bitfield{ HandshakeFlagsBits }; flags.set(LtepFlag); flags.set(FextFlag); if (mediator_->allows_dht()) { flags.set(DhtFlag); } auto const flag_bytes = flags.raw(); [[maybe_unused]] auto* walk = buf; walk = std::copy_n(reinterpret_cast(std::data(HandshakeName)), std::size(HandshakeName), walk); walk = std::copy(std::begin(flag_bytes), std::end(flag_bytes), walk); walk = std::copy_n(reinterpret_cast(std::data(info_hash)), std::size(info_hash), walk); walk = std::copy(std::begin(info->client_peer_id), std::end(info->client_peer_id), walk); TR_ASSERT(walk - buf == HandshakeSize); return true; } tr_handshake::ParseResult tr_handshake::parse_handshake(tr_peerIo* peer_io) { tr_logAddTraceHand(this, fmt::format("payload: need {}, got {}", HandshakeSize, peer_io->read_buffer_size())); if (peer_io->read_buffer_size() < HandshakeSize) { return ParseResult::EncryptionWrong; } /* confirm the protocol */ auto name = decltype(HandshakeName){}; peer_io->read_bytes(std::data(name), std::size(name)); if (name != HandshakeName) { return ParseResult::EncryptionWrong; } /* read the reserved bytes */ auto flags = tr_bitfield{ HandshakeFlagsBits }; auto reserved = std::array{}; peer_io->read_bytes(std::data(reserved), std::size(reserved)); flags.setRaw(std::data(reserved), std::size(reserved)); peer_io->set_supports_dht(flags.test(DhtFlag)); peer_io->set_supports_ltep(flags.test(LtepFlag)); peer_io->set_supports_fext(flags.test(FextFlag)); // torrent hash auto info_hash = tr_sha1_digest_t{}; peer_io->read_bytes(std::data(info_hash), std::size(info_hash)); if (info_hash == tr_sha1_digest_t{} || info_hash != peer_io->torrent_hash()) { tr_logAddTraceHand(this, "peer returned the wrong hash. wtf?"); return ParseResult::BadTorrent; } // peer_id auto peer_id = tr_peer_id_t{}; peer_io->read_bytes(std::data(peer_id), std::size(peer_id)); set_peer_id(peer_id); /* peer id */ auto const peer_id_sv = std::string_view{ std::data(peer_id), std::size(peer_id) }; tr_logAddTraceHand(this, fmt::format("peer-id is '{}'", peer_id_sv)); if (auto const info = mediator_->torrent(info_hash); info && info->client_peer_id == peer_id) { tr_logAddTraceHand(this, "streuth! we've connected to ourselves."); return ParseResult::PeerIsSelf; } return ParseResult::Ok; } // --- Outgoing Connections // 1 A->B: our public key (Ya) and some padding (PadA) void tr_handshake::send_ya(tr_peerIo* io) { send_public_key_and_pad(io); set_state(tr_handshake::State::AwaitingYb); } [[nodiscard]] uint32_t tr_handshake::get_crypto_select(tr_encryption_mode encryption_mode, uint32_t crypto_provide) noexcept { auto choices = std::array{}; int n_choices = 0; switch (encryption_mode) { case TR_ENCRYPTION_REQUIRED: choices[n_choices++] = CryptoProvideCrypto; break; case TR_ENCRYPTION_PREFERRED: choices[n_choices++] = CryptoProvideCrypto; choices[n_choices++] = CryptoProvidePlaintext; break; case TR_CLEAR_PREFERRED: choices[n_choices++] = CryptoProvidePlaintext; choices[n_choices++] = CryptoProvideCrypto; break; } for (auto const& choice : choices) { if ((crypto_provide & choice) != 0) { return choice; } } return 0; } ReadState tr_handshake::read_yb(tr_peerIo* peer_io) { if (peer_io->read_buffer_size() < std::size(HandshakeName)) { return READ_LATER; } bool const is_encrypted = !peer_io->read_buffer_starts_with(HandshakeName); auto peer_public_key = DH::key_bigend_t{}; if (is_encrypted && (peer_io->read_buffer_size() < std::size(peer_public_key))) { return READ_LATER; } tr_logAddTraceHand(this, is_encrypted ? "got an encrypted handshake" : "got a plain handshake"); if (!is_encrypted) { set_state(tr_handshake::State::AwaitingHandshake); return READ_NOW; } set_have_read_anything_from_peer(true); // get the peer's public key peer_io->read_bytes(std::data(peer_public_key), std::size(peer_public_key)); dh_.setPeerPublicKey(peer_public_key); /* now send these: HASH('req1', S), HASH('req2', SKEY) xor HASH('req3', S), * ENCRYPT(VC, crypto_provide, len(PadC), PadC, len(IA)), ENCRYPT(IA) */ auto outbuf = libtransmission::Buffer{}; /* HASH('req1', S) */ outbuf.add(tr_sha1::digest("req1"sv, dh_.secret())); auto const& info_hash = peer_io->torrent_hash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readYb requires an info_hash"); /* HASH('req2', SKEY) xor HASH('req3', S) */ { auto const req2 = tr_sha1::digest("req2"sv, info_hash); auto const req3 = tr_sha1::digest("req3"sv, dh_.secret()); auto x_or = tr_sha1_digest_t{}; for (size_t i = 0, n = std::size(x_or); i < n; ++i) { x_or[i] = req2[i] ^ req3[i]; } outbuf.add(x_or); } /* ENCRYPT(VC, crypto_provide, len(PadC), PadC * PadC is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ peer_io->write(outbuf, false); peer_io->encrypt_init(peer_io->is_incoming(), dh_, info_hash); outbuf.add(VC); outbuf.add_uint32(crypto_provide()); outbuf.add_uint16(0); /* ENCRYPT len(IA)), ENCRYPT(IA) */ if (auto msg = std::array{}; build_handshake_message(peer_io, std::data(msg))) { outbuf.add_uint16(std::size(msg)); outbuf.add(msg); have_sent_bittorrent_handshake_ = true; } else { return done(false); } /* send it */ set_state(State::AwaitingVc); peer_io->write(outbuf, false); return READ_NOW; } // MSE spec: "Since the length of [PadB is] unknown, // A will be able to resynchronize on ENCRYPT(VC)" ReadState tr_handshake::read_vc(tr_peerIo* peer_io) { auto const info_hash = peer_io->torrent_hash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readVC requires an info_hash"); // find the end of PadB by looking for `ENCRYPT(VC)` auto needle = VC; auto filter = tr_message_stream_encryption::Filter{}; filter.encryptInit(true, dh_, info_hash); filter.encrypt(std::size(needle), std::data(needle)); for (size_t i = 0; i < PadbMaxlen; ++i) { if (peer_io->read_buffer_size() < std::size(needle)) { tr_logAddTraceHand(this, "not enough bytes... returning read_more"); return READ_LATER; } if (peer_io->read_buffer_starts_with(needle)) { tr_logAddTraceHand(this, "got it!"); // We already know it's a match; now we just need to // consume it from the read buffer. peer_io->decrypt_init(peer_io->is_incoming(), dh_, info_hash); peer_io->read_bytes(std::data(needle), std::size(needle)); set_state(tr_handshake::State::AwaitingCryptoSelect); return READ_NOW; } peer_io->read_buffer_drain(1); } tr_logAddTraceHand(this, "couldn't find ENCRYPT(VC)"); return done(false); } ReadState tr_handshake::read_crypto_select(tr_peerIo* peer_io) { if (static size_t constexpr NeedLen = sizeof(uint32_t) + sizeof(uint16_t); peer_io->read_buffer_size() < NeedLen) { return READ_LATER; } auto crypto_select = uint32_t{}; peer_io->read_uint32(&crypto_select); crypto_select_ = crypto_select; tr_logAddTraceHand(this, fmt::format("crypto select is {}", crypto_select)); if ((crypto_select & crypto_provide()) == 0) { tr_logAddTraceHand(this, "peer selected an encryption option we didn't offer"); return done(false); } uint16_t pad_d_len = 0; peer_io->read_uint16(&pad_d_len); tr_logAddTraceHand(this, fmt::format("pad_d_len is {}", pad_d_len)); if (pad_d_len > 512) { tr_logAddTraceHand(this, "encryption handshake: pad_d_len is too long"); return done(false); } pad_d_len_ = pad_d_len; set_state(tr_handshake::State::AwaitingPadD); return READ_NOW; } ReadState tr_handshake::read_pad_d(tr_peerIo* peer_io) { size_t const needlen = pad_d_len_; tr_logAddTraceHand(this, fmt::format("pad d: need {}, got {}", needlen, peer_io->read_buffer_size())); if (peer_io->read_buffer_size() < needlen) { return READ_LATER; } peer_io->read_buffer_drain(needlen); set_state(tr_handshake::State::AwaitingHandshake); return READ_NOW; } // --- Incoming Connections ReadState tr_handshake::read_handshake(tr_peerIo* peer_io) { static auto constexpr Needlen = IncomingHandshakeLen; tr_logAddTraceHand(this, fmt::format("payload: need {}, got {}", Needlen, peer_io->read_buffer_size())); if (peer_io->read_buffer_size() < Needlen) { return READ_LATER; } set_have_read_anything_from_peer(true); if (peer_io->read_buffer_starts_with(HandshakeName)) // unencrypted { if (encryption_mode_ == TR_ENCRYPTION_REQUIRED) { tr_logAddTraceHand(this, "peer is unencrypted, and we're disallowing that"); return done(false); } } else // either encrypted or corrupt { if (is_incoming()) { tr_logAddTraceHand(this, "I think peer is sending us an encrypted handshake..."); set_state(tr_handshake::State::AwaitingYa); return READ_NOW; } } auto name = decltype(HandshakeName){}; peer_io->read_bytes(std::data(name), std::size(name)); if (name != HandshakeName) { return done(false); } // reserved bytes / flags auto reserved = std::array{}; auto flags = tr_bitfield{ HandshakeFlagsBits }; peer_io->read_bytes(std::data(reserved), std::size(reserved)); flags.setRaw(std::data(reserved), std::size(reserved)); peer_io->set_supports_dht(flags.test(DhtFlag)); peer_io->set_supports_ltep(flags.test(LtepFlag)); peer_io->set_supports_fext(flags.test(FextFlag)); /* torrent hash */ auto hash = tr_sha1_digest_t{}; peer_io->read_bytes(std::data(hash), std::size(hash)); if (is_incoming()) { if (!mediator_->torrent(hash)) { tr_logAddTraceHand(this, "peer is trying to connect to us for a torrent we don't have."); return done(false); } peer_io->set_torrent_hash(hash); } else // outgoing { if (peer_io->torrent_hash() != hash) { tr_logAddTraceHand(this, "peer returned the wrong hash. wtf?"); return done(false); } } // If it's an incoming message, we need to send a response handshake if (!have_sent_bittorrent_handshake_) { auto msg = std::array{}; if (!build_handshake_message(peer_io, std::data(msg))) { return done(false); } peer_io->write_bytes(std::data(msg), std::size(msg), false); have_sent_bittorrent_handshake_ = true; } set_state(State::AwaitingPeerId); return READ_NOW; } ReadState tr_handshake::read_peer_id(tr_peerIo* peer_io) { // read the peer_id auto peer_id = tr_peer_id_t{}; if (peer_io->read_buffer_size() < std::size(peer_id)) { return READ_LATER; } peer_io->read_bytes(std::data(peer_id), std::size(peer_id)); set_peer_id(peer_id); auto client = std::array{}; tr_clientForId(std::data(client), std::size(client), peer_id); tr_logAddTraceHand(this, fmt::format("peer-id is '{}' ... isIncoming is {}", std::data(client), is_incoming())); // if we've somehow connected to ourselves, don't keep the connection auto const info_hash = peer_io_->torrent_hash(); auto const info = mediator_->torrent(info_hash); auto const connected_to_self = info && info->client_peer_id == peer_id; return done(!connected_to_self); } ReadState tr_handshake::read_ya(tr_peerIo* peer_io) { auto peer_public_key = DH::key_bigend_t{}; tr_logAddTraceHand( this, fmt::format("in readYa... need {}, have {}", std::size(peer_public_key), peer_io->read_buffer_size())); if (peer_io->read_buffer_size() < std::size(peer_public_key)) { return READ_LATER; } /* read the incoming peer's public key */ peer_io->read_bytes(std::data(peer_public_key), std::size(peer_public_key)); dh_.setPeerPublicKey(peer_public_key); // send our public key to the peer tr_logAddTraceHand(this, "sending B->A: Diffie Hellman Yb, PadB"); send_public_key_and_pad(peer_io); set_state(State::AwaitingPadA); return READ_NOW; } ReadState tr_handshake::read_pad_a(tr_peerIo* peer_io) { // find the end of PadA by looking for HASH('req1', S) auto const needle = tr_sha1::digest("req1"sv, dh_.secret()); for (size_t i = 0; i < PadaMaxlen; ++i) { if (peer_io->read_buffer_size() < std::size(needle)) { tr_logAddTraceHand(this, "not enough bytes... returning read_more"); return READ_LATER; } if (peer_io->read_buffer_starts_with(needle)) { tr_logAddTraceHand(this, "found it... looking setting to awaiting_crypto_provide"); peer_io->read_buffer_drain(std::size(needle)); set_state(State::AwaitingCryptoProvide); return READ_NOW; } peer_io->read_buffer_drain(1U); } tr_logAddTraceHand(this, "couldn't find HASH('req', S)"); return done(false); } ReadState tr_handshake::read_crypto_provide(tr_peerIo* peer_io) { /* HASH('req2', SKEY) xor HASH('req3', S), ENCRYPT(VC, crypto_provide, len(PadC)) */ uint16_t padc_len = 0; uint32_t crypto_provide = 0; auto obfuscated_hash = tr_sha1_digest_t{}; size_t const needlen = sizeof(obfuscated_hash) + /* HASH('req2', SKEY) xor HASH('req3', S) */ std::size(VC) + sizeof(crypto_provide) + sizeof(padc_len); if (peer_io->read_buffer_size() < needlen) { return READ_LATER; } /* This next piece is HASH('req2', SKEY) xor HASH('req3', S) ... * we can get the first half of that (the obfuscatedTorrentHash) * by building the latter and xor'ing it with what the peer sent us */ tr_logAddTraceHand(this, "reading obfuscated torrent hash..."); auto req2 = tr_sha1_digest_t{}; peer_io->read_bytes(std::data(req2), std::size(req2)); auto const req3 = tr_sha1::digest("req3"sv, dh_.secret()); for (size_t i = 0; i < std::size(obfuscated_hash); ++i) { obfuscated_hash[i] = req2[i] ^ req3[i]; } if (auto const info = mediator_->torrent_from_obfuscated(obfuscated_hash); info) { bool const client_is_seed = info->is_done; bool const peer_is_seed = mediator_->is_peer_known_seed(info->id, peer_io->address()); tr_logAddTraceHand(this, fmt::format("got INCOMING connection's encrypted handshake for torrent [{}]", info->id)); peer_io->set_torrent_hash(info->info_hash); if (client_is_seed && peer_is_seed) { tr_logAddTraceHand(this, "another seed tried to reconnect to us!"); return done(false); } } else { tr_logAddTraceHand(this, "can't find that torrent..."); return done(false); } /* next part: ENCRYPT(VC, crypto_provide, len(PadC), */ auto const& info_hash = peer_io->torrent_hash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readCryptoProvide requires an info_hash"); peer_io->decrypt_init(peer_io->is_incoming(), dh_, info_hash); auto vc_in = vc_t{}; peer_io->read_bytes(std::data(vc_in), std::size(vc_in)); peer_io->read_uint32(&crypto_provide); crypto_provide_ = crypto_provide; tr_logAddTraceHand(this, fmt::format("crypto_provide is {}", crypto_provide)); peer_io->read_uint16(&padc_len); tr_logAddTraceHand(this, fmt::format("padc is {}", padc_len)); if (padc_len > PadcMaxlen) { tr_logAddTraceHand(this, "peer's PadC is too big"); return done(false); } pad_c_len_ = padc_len; set_state(State::AwaitingPadC); return READ_NOW; } ReadState tr_handshake::read_pad_c(tr_peerIo* peer_io) { if (auto const needlen = pad_c_len_ + sizeof(uint16_t); peer_io->read_buffer_size() < needlen) { return READ_LATER; } // read the throwaway padc auto pad_c = std::array{}; peer_io->read_bytes(std::data(pad_c), pad_c_len_); /* read ia_len */ uint16_t ia_len = 0; peer_io->read_uint16(&ia_len); tr_logAddTraceHand(this, fmt::format("ia_len is {}", ia_len)); ia_len_ = ia_len; set_state(State::AwaitingIa); return READ_NOW; } ReadState tr_handshake::read_ia(tr_peerIo* peer_io) { size_t const needlen = ia_len_; tr_logAddTraceHand(this, fmt::format("reading IA... have {}, need {}", peer_io->read_buffer_size(), needlen)); if (peer_io->read_buffer_size() < needlen) { return READ_LATER; } // B->A: ENCRYPT(VC, crypto_select, len(padD), padD), ENCRYPT2(Payload Stream) auto const& info_hash = peer_io->torrent_hash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readIA requires an info_hash"); peer_io->encrypt_init(peer_io->is_incoming(), dh_, info_hash); auto outbuf = libtransmission::Buffer{}; // send VC tr_logAddTraceHand(this, "sending vc"); outbuf.add(VC); /* send crypto_select */ uint32_t const crypto_select = get_crypto_select(encryption_mode_, crypto_provide_); if (crypto_select != 0) { tr_logAddTraceHand(this, fmt::format("selecting crypto mode '{}'", crypto_select)); outbuf.add_uint32(crypto_select); } else { tr_logAddTraceHand(this, "peer didn't offer an encryption mode we like."); return done(false); } tr_logAddTraceHand(this, "sending pad d"); /* ENCRYPT(VC, crypto_provide, len(PadD), PadD * PadD is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ outbuf.add_uint16(0); /* maybe de-encrypt our connection */ if (crypto_select == CryptoProvidePlaintext) { peer_io->write(outbuf, false); TR_ASSERT(std::empty(outbuf)); } tr_logAddTraceHand(this, "sending handshake"); /* send our handshake */ if (auto msg = std::array{}; build_handshake_message(peer_io, std::data(msg))) { outbuf.add(msg); have_sent_bittorrent_handshake_ = true; } else { return done(false); } /* send it out */ peer_io->write(outbuf, false); /* now await the handshake */ set_state(State::AwaitingPayloadStream); return READ_NOW; } ReadState tr_handshake::read_payload_stream(tr_peerIo* peer_io) { static auto constexpr Needlen = HandshakeSize; tr_logAddTraceHand(this, fmt::format("reading payload stream... have {}, need {}", peer_io->read_buffer_size(), Needlen)); if (peer_io->read_buffer_size() < Needlen) { return READ_LATER; } /* parse the handshake ... */ auto const i = parse_handshake(peer_io); tr_logAddTraceHand(this, fmt::format("parseHandshake returned {}", static_cast(i))); if (i != ParseResult::Ok) { return done(false); } /* we've completed the BT handshake... pass the work on to peer-msgs */ return done(true); } // --- ReadState tr_handshake::can_read(tr_peerIo* peer_io, void* vhandshake, size_t* piece) { auto* handshake = static_cast(vhandshake); bool ready_for_more = true; /* no piece data in handshake */ *piece = 0; tr_logAddTraceHand(handshake, fmt::format("handling canRead; state is [{}]", handshake->state_string())); ReadState ret = READ_NOW; while (ready_for_more) { switch (handshake->state()) { case State::AwaitingHandshake: ret = handshake->read_handshake(peer_io); break; case State::AwaitingPeerId: ret = handshake->read_peer_id(peer_io); break; case State::AwaitingYa: ret = handshake->read_ya(peer_io); break; case State::AwaitingPadA: ret = handshake->read_pad_a(peer_io); break; case State::AwaitingCryptoProvide: ret = handshake->read_crypto_provide(peer_io); break; case State::AwaitingPadC: ret = handshake->read_pad_c(peer_io); break; case State::AwaitingIa: ret = handshake->read_ia(peer_io); break; case State::AwaitingPayloadStream: ret = handshake->read_payload_stream(peer_io); break; case State::AwaitingYb: ret = handshake->read_yb(peer_io); break; case State::AwaitingVc: ret = handshake->read_vc(peer_io); break; case State::AwaitingCryptoSelect: ret = handshake->read_crypto_select(peer_io); break; case State::AwaitingPadD: ret = handshake->read_pad_d(peer_io); break; default: #ifdef TR_ENABLE_ASSERTS TR_ASSERT_MSG( false, fmt::format(FMT_STRING("unhandled handshake state {:d}"), static_cast(handshake->state()))); #else ret = READ_ERR; break; #endif } if (ret != READ_NOW) { ready_for_more = false; } else if (handshake->is_state(State::AwaitingPadC)) { ready_for_more = peer_io->read_buffer_size() >= handshake->pad_c_len_; } else if (handshake->is_state(State::AwaitingPadD)) { ready_for_more = peer_io->read_buffer_size() >= handshake->pad_d_len_; } else if (handshake->is_state(State::AwaitingIa)) { ready_for_more = peer_io->read_buffer_size() >= handshake->ia_len_; } } return ret; } void tr_handshake::on_error(tr_peerIo* io, tr_error const& error, void* vhandshake) { auto* handshake = static_cast(vhandshake); if (io->is_utp() && !io->is_incoming() && handshake->is_state(State::AwaitingYb)) { // the peer probably doesn't speak µTP. auto const info_hash = io->torrent_hash(); auto const info = handshake->mediator_->torrent(info_hash); /* Don't mark a peer as non-µTP unless it's really a connect failure. */ if ((error.code == ETIMEDOUT || error.code == ECONNREFUSED) && info) { handshake->mediator_->set_utp_failed(info_hash, io->address()); } if (handshake->mediator_->allows_tcp() && io->reconnect()) { auto msg = std::array{}; handshake->build_handshake_message(io, std::data(msg)); handshake->have_sent_bittorrent_handshake_ = true; handshake->set_state(State::AwaitingHandshake); io->write_bytes(std::data(msg), std::size(msg), false); } } /* if the error happened while we were sending a public key, we might * have encountered a peer that doesn't do encryption... reconnect and * try a plaintext handshake */ if ((handshake->is_state(State::AwaitingYb) || handshake->is_state(State::AwaitingVc)) && handshake->encryption_mode_ != TR_ENCRYPTION_REQUIRED && handshake->mediator_->allows_tcp() && io->reconnect()) { auto msg = std::array{}; tr_logAddTraceHand(handshake, "handshake failed, trying plaintext..."); handshake->build_handshake_message(io, std::data(msg)); handshake->have_sent_bittorrent_handshake_ = true; handshake->set_state(State::AwaitingHandshake); io->write_bytes(std::data(msg), std::size(msg), false); } else { tr_logAddTraceHand(handshake, fmt::format("handshake socket err: {:s} ({:d})", error.message, error.code)); handshake->done(false); } } bool tr_handshake::fire_done(bool is_connected) { maybe_recycle_dh(); if (!on_done_) { return false; } // handshake could get destroyed inside on_done, // so handle all our housekeeping *before* calling it auto cb = DoneFunc{}; std::swap(cb, on_done_); auto peer_io = std::shared_ptr{}; std::swap(peer_io, peer_io_); bool const success = (cb)(Result{ std::move(peer_io), peer_id_, have_read_anything_from_peer_, is_connected }); return success; } std::string_view tr_handshake::state_string(State state) noexcept { switch (state) { case State::AwaitingHandshake: return "awaiting handshake"; case State::AwaitingPeerId: return "awaiting peer id"; case State::AwaitingYa: return "awaiting ya"; case State::AwaitingPadA: return "awaiting pad a"; case State::AwaitingCryptoProvide: return "awaiting crypto provide"; case State::AwaitingPadC: return "awaiting pad c"; case State::AwaitingIa: return "awaiting ia"; case State::AwaitingPayloadStream: return "awaiting payload stream"; // outgoing case State::AwaitingYb: return "awaiting yb"; case State::AwaitingVc: return "awaiting vc"; case State::AwaitingCryptoSelect: return "awaiting crypto select"; case State::AwaitingPadD: return "awaiting pad d"; } return "unknown state"; } uint32_t tr_handshake::crypto_provide() const noexcept { auto provide = uint32_t{}; switch (encryption_mode_) { case TR_ENCRYPTION_REQUIRED: case TR_ENCRYPTION_PREFERRED: provide |= CryptoProvideCrypto; break; case TR_CLEAR_PREFERRED: provide |= CryptoProvideCrypto | CryptoProvidePlaintext; break; } return provide; } // --- tr_handshake::tr_handshake(Mediator* mediator, std::shared_ptr peer_io, tr_encryption_mode mode, DoneFunc on_done) : dh_{ tr_handshake::get_dh(mediator) } , on_done_{ std::move(on_done) } , peer_io_{ std::move(peer_io) } , timeout_timer_{ mediator->timer_maker().create([this]() { fire_done(false); }) } , mediator_{ mediator } , encryption_mode_{ mode } { timeout_timer_->startSingleShot(HandshakeTimeoutSec); peer_io_->set_callbacks(&tr_handshake::can_read, nullptr, &tr_handshake::on_error, this); if (is_incoming()) { set_state(State::AwaitingHandshake); } else if (encryption_mode_ != TR_CLEAR_PREFERRED) { send_ya(peer_io_.get()); } else { auto msg = std::array{}; build_handshake_message(peer_io_.get(), std::data(msg)); have_sent_bittorrent_handshake_ = true; set_state(State::AwaitingHandshake); peer_io_->write_bytes(std::data(msg), std::size(msg), false); } }