// This file Copyright © 2007-2022 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include /* error codes ERANGE, ... */ #include /* INT_MAX */ #include #include #include /* qsort */ #include // time_t #include // std::back_inserter #include #include #include #include #define LIBTRANSMISSION_PEER_MODULE #include "transmission.h" #include "announcer.h" #include "bandwidth.h" #include "blocklist.h" #include "cache.h" #include "clients.h" #include "completion.h" #include "crypto-utils.h" #include "handshake.h" #include "log.h" #include "net.h" #include "peer-io.h" #include "peer-mgr-active-requests.h" #include "peer-mgr-wishlist.h" #include "peer-mgr.h" #include "peer-msgs.h" #include "ptrarray.h" #include "session.h" #include "stats.h" /* tr_statsAddUploaded, tr_statsAddDownloaded */ #include "torrent.h" #include "tr-assert.h" #include "tr-utp.h" #include "utils.h" #include "webseed.h" // how frequently to cull old atoms static auto constexpr AtomPeriodMsec = int{ 60 * 1000 }; // how frequently to change which peers are choked static auto constexpr RechokePeriodMsec = int{ 10 * 1000 }; // an optimistically unchoked peer is immune from rechoking // for this many calls to rechokeUploads(). static auto constexpr OptimisticUnchokeMultiplier = int{ 4 }; // how frequently to reallocate bandwidth static auto constexpr BandwidthPeriodMsec = int{ 500 }; // how frequently to age out old piece request lists static auto constexpr RefillUpkeepPeriodMsec = int{ 10 * 1000 }; // how frequently to decide which peers live and die static auto constexpr ReconnectPeriodMsec = int{ 500 }; // when many peers are available, keep idle ones this long static auto constexpr MinUploadIdleSecs = int{ 60 }; // when few peers are available, keep idle ones this long static auto constexpr MaxUploadIdleSecs = int{ 60 * 5 }; // max number of peers to ask for per second overall. // this throttle is to avoid overloading the router static auto constexpr MaxConnectionsPerSecond = size_t{ 12 }; // number of bad pieces a peer is allowed to send before we ban them static auto constexpr MaxBadPiecesPerPeer = int{ 5 }; // use for bitwise operations w/peer_atom.flags2 static auto constexpr MyflagBanned = int{ 1 }; // use for bitwise operations w/peer_atom.flags2 // unreachable for now... but not banned. // if they try to connect to us it's okay static auto constexpr MyflagUnreachable = int{ 2 }; // the minimum we'll wait before attempting to reconnect to a peer static auto constexpr MinimumReconnectIntervalSecs = int{ 5 }; // how long we'll let requests we've made linger before we cancel them static auto constexpr RequestTtlSecs = int{ 90 }; static auto constexpr CancelHistorySec = int{ 60 }; /** *** **/ /** * Peer information that should be kept even before we've connected and * after we've disconnected. These are kept in a pool of peer_atoms to decide * which ones would make good candidates for connecting to, and to watch out * for banned peers. * * @see tr_peer * @see tr_peerMsgs */ struct peer_atom { uint8_t fromFirst; /* where the peer was first found */ uint8_t fromBest; /* the "best" value of where the peer has been found */ uint8_t flags; /* these match the added_f flags */ uint8_t flags2; /* flags that aren't defined in added_f */ int8_t blocklisted; /* -1 for unknown, true for blocklisted, false for not blocklisted */ tr_port port; bool utp_failed; /* We recently failed to connect over uTP */ uint16_t numFails; time_t time; /* when the peer's connection status last changed */ time_t piece_data_time; time_t lastConnectionAttemptAt; time_t lastConnectionAt; /* similar to a TTL field, but less rigid -- * if the swarm is small, the atom will be kept past this date. */ time_t shelf_date; tr_peer* peer; /* will be nullptr if not connected */ tr_address addr; }; #ifndef TR_ENABLE_ASSERTS #define tr_isAtom(a) (true) #else static bool tr_isAtom(struct peer_atom const* atom) { return atom != nullptr && atom->fromFirst < TR_PEER_FROM__MAX && atom->fromBest < TR_PEER_FROM__MAX && tr_address_is_valid(&atom->addr); } #endif static char const* tr_atomAddrStr(struct peer_atom const* atom) { static char addrstr[TR_ADDRSTRLEN]; return atom != nullptr ? tr_address_and_port_to_string(addrstr, sizeof(addrstr), &atom->addr, atom->port) : "[no atom]"; } /** @brief Opaque, per-torrent data structure for peer connection information */ class tr_swarm { public: tr_swarm(tr_peerMgr* manager_in, tr_torrent* tor_in) : manager{ manager_in } , tor{ tor_in } { } public: tr_swarm_stats stats = {}; std::map outgoing_handshakes; tr_ptrArray pool = {}; /* struct peer_atom */ tr_ptrArray peers = {}; /* tr_peerMsgs */ std::vector> webseeds; tr_peerMgr* const manager; tr_torrent* const tor; tr_peerMsgs* optimistic = nullptr; /* the optimistic peer, or nullptr if none */ int optimisticUnchokeTimeScaler = 0; bool poolIsAllSeeds = false; bool poolIsAllSeedsDirty = true; /* true if poolIsAllSeeds needs to be recomputed */ bool isRunning = false; bool needsCompletenessCheck = true; bool endgame = false; ActiveRequests active_requests; int interestedCount = 0; int maxPeers = 0; time_t lastCancel = 0; }; struct tr_peerMgr { explicit tr_peerMgr(tr_session* session_in) : session{ session_in } { } [[nodiscard]] auto unique_lock() const { return session->unique_lock(); } tr_session* const session; std::map incoming_handshakes; event* bandwidthTimer = nullptr; event* rechokeTimer = nullptr; event* refillUpkeepTimer = nullptr; event* atomTimer = nullptr; }; #define tr_logAddDebugSwarm(swarm, msg) tr_logAddDebugTor((swarm)->tor, msg) #define tr_logAddTraceSwarm(swarm, msg) tr_logAddTraceTor((swarm)->tor, msg) /** *** tr_peer virtual functions **/ unsigned int tr_peerGetPieceSpeed_Bps(tr_peer const* peer, uint64_t now, tr_direction direction) { unsigned int Bps = 0; peer->is_transferring_pieces(now, direction, &Bps); return Bps; } tr_peer::tr_peer(tr_torrent const* tor, peer_atom* atom_in) : session{ tor->session } , atom{ atom_in } , swarm{ tor->swarm } , blame{ tor->blockCount() } , have{ tor->pieceCount() } { } tr_peer::~tr_peer() { if (swarm != nullptr) { swarm->active_requests.remove(this); } if (atom != nullptr) { atom->peer = nullptr; } } /** *** **/ static int comparePeerAtomToAddress(void const* va, void const* vb) { auto const* const a = static_cast(va); auto const* const b = static_cast(vb); return tr_address_compare(&a->addr, b); } static int compareAtomsByAddress(void const* va, void const* vb) { auto const* const b = static_cast(vb); TR_ASSERT(tr_isAtom(b)); return comparePeerAtomToAddress(va, &b->addr); } /** *** **/ tr_address const* tr_peerAddress(tr_peer const* peer) { return &peer->atom->addr; } static tr_swarm* getExistingSwarm(tr_peerMgr* manager, tr_sha1_digest_t const& hash) { auto* const tor = manager->session->torrents().get(hash); return tor == nullptr ? nullptr : tor->swarm; } static int peerCompare(void const* va, void const* vb) { auto const* const a = static_cast(va); auto const* const b = static_cast(vb); return tr_address_compare(tr_peerAddress(a), tr_peerAddress(b)); } static struct peer_atom* getExistingAtom(tr_swarm const* cswarm, tr_address const* addr) { auto* swarm = const_cast(cswarm); return static_cast(tr_ptrArrayFindSorted(&swarm->pool, addr, comparePeerAtomToAddress)); } static bool peerIsInUse(tr_swarm const* cs, struct peer_atom const* atom) { auto const* const s = const_cast(cs); auto const lock = s->manager->unique_lock(); return atom->peer != nullptr || s->outgoing_handshakes.count(atom->addr) != 0 || s->manager->incoming_handshakes.count(atom->addr) != 0; } static void swarmFree(tr_swarm* s) { TR_ASSERT(s != nullptr); auto const lock = s->manager->unique_lock(); TR_ASSERT(!s->isRunning); TR_ASSERT(std::empty(s->outgoing_handshakes)); TR_ASSERT(tr_ptrArrayEmpty(&s->peers)); tr_ptrArrayDestruct(&s->pool, (PtrArrayForeachFunc)tr_free); tr_ptrArrayDestruct(&s->peers, nullptr); s->stats = {}; delete s; } static void peerCallbackFunc(tr_peer* /*peer*/, tr_peer_event const* /*e*/, void* /*vs*/); static void rebuildWebseedArray(tr_swarm* s, tr_torrent* tor) { size_t const n = tor->webseedCount(); s->webseeds.clear(); s->webseeds.reserve(n); for (size_t i = 0; i < n; ++i) { s->webseeds.emplace_back(tr_webseedNew(tor, tor->webseed(i), peerCallbackFunc, s)); } s->webseeds.shrink_to_fit(); s->stats.activeWebseedCount = 0; } static tr_swarm* swarmNew(tr_peerMgr* manager, tr_torrent* tor) { auto* swarm = new tr_swarm{ manager, tor }; rebuildWebseedArray(swarm, tor); return swarm; } static void ensureMgrTimersExist(struct tr_peerMgr* m); tr_peerMgr* tr_peerMgrNew(tr_session* session) { auto* const m = new tr_peerMgr{ session }; ensureMgrTimersExist(m); return m; } static void deleteTimer(struct event** t) { if (*t != nullptr) { event_free(*t); *t = nullptr; } } static void deleteTimers(struct tr_peerMgr* m) { deleteTimer(&m->atomTimer); deleteTimer(&m->bandwidthTimer); deleteTimer(&m->rechokeTimer); deleteTimer(&m->refillUpkeepTimer); } void tr_peerMgrFree(tr_peerMgr* manager) { auto const lock = manager->unique_lock(); deleteTimers(manager); /* free the handshakes. Abort invokes handshakeDoneCB(), which removes * the item from manager->handshakes, so this is a little roundabout... */ while (!std::empty(manager->incoming_handshakes)) { tr_handshakeAbort(std::begin(manager->incoming_handshakes)->second); } delete manager; } /*** **** ***/ void tr_peerMgrOnBlocklistChanged(tr_peerMgr* mgr) { /* we cache whether or not a peer is blocklisted... since the blocklist has changed, erase that cached value */ for (auto* const tor : mgr->session->torrents()) { tr_swarm* s = tor->swarm; for (int i = 0, n = tr_ptrArraySize(&s->pool); i < n; ++i) { auto* const atom = static_cast(tr_ptrArrayNth(&s->pool, i)); atom->blocklisted = -1; } } } static bool isAtomBlocklisted(tr_session const* session, struct peer_atom* atom) { if (atom->blocklisted < 0) { atom->blocklisted = (int8_t)tr_sessionIsAddressBlocked(session, &atom->addr); } return atom->blocklisted != 0; } /*** **** ***/ static constexpr bool atomIsSeed(struct peer_atom const* atom) { return (atom != nullptr) && ((atom->flags & ADDED_F_SEED_FLAG) != 0); } static void atomSetSeed(tr_swarm* s, struct peer_atom* atom) { tr_logAddTraceSwarm(s, fmt::format("marking peer {} as a seed", tr_atomAddrStr(atom))); atom->flags |= ADDED_F_SEED_FLAG; s->poolIsAllSeedsDirty = true; } bool tr_peerMgrPeerIsSeed(tr_torrent const* tor, tr_address const* addr) { bool isSeed = false; if (auto const* atom = getExistingAtom(tor->swarm, addr); atom != nullptr) { isSeed = atomIsSeed(atom); } return isSeed; } void tr_peerMgrSetUtpSupported(tr_torrent* tor, tr_address const* addr) { struct peer_atom* atom = getExistingAtom(tor->swarm, addr); if (atom != nullptr) { atom->flags |= ADDED_F_UTP_FLAGS; } } void tr_peerMgrSetUtpFailed(tr_torrent* tor, tr_address const* addr, bool failed) { struct peer_atom* atom = getExistingAtom(tor->swarm, addr); if (atom != nullptr) { atom->utp_failed = failed; } } /** *** REQUESTS *** *** There are two data structures associated with managing block requests: *** *** 1. tr_swarm::active_requests, an opaque class that tracks what requests *** we currently have, i.e. which blocks and from which peers. *** This is used for cancelling requests that have been waiting *** for too long and avoiding duplicate requests. *** *** 2. tr_swarm::pieces, an array of "struct weighted_piece" which lists the *** pieces that we want to request. It's used to decide which blocks to *** return next when tr_peerMgrGetBlockRequests() is called. **/ /** *** struct block_request **/ static int countActiveWebseeds(tr_swarm* s) { if (!s->tor->isRunning || s->tor->isDone()) { return 0; } uint64_t const now = tr_time_msec(); return std::count_if( std::begin(s->webseeds), std::end(s->webseeds), [&now](auto const& webseed) { return webseed->is_transferring_pieces(now, TR_DOWN, nullptr); }); } // TODO: if we keep this, add equivalent API to ActiveRequest void tr_peerMgrClientSentRequests(tr_torrent* torrent, tr_peer* peer, tr_block_span_t span) { auto const now = tr_time(); for (tr_block_index_t block = span.begin; block < span.end; ++block) { torrent->swarm->active_requests.add(block, peer, now); } } static void updateEndgame(tr_swarm* s) { /* we consider ourselves to be in endgame if the number of bytes we've got requested is >= the number of bytes left to download */ s->endgame = uint64_t(std::size(s->active_requests)) * tr_block_info::BlockSize >= s->tor->leftUntilDone(); } std::vector tr_peerMgrGetNextRequests(tr_torrent* torrent, tr_peer const* peer, size_t numwant) { class MediatorImpl final : public Wishlist::Mediator { public: MediatorImpl(tr_torrent const* torrent_in, tr_peer const* peer_in) : torrent_{ torrent_in } , swarm_{ torrent_in->swarm } , peer_{ peer_in } { } ~MediatorImpl() override = default; [[nodiscard]] bool clientCanRequestBlock(tr_block_index_t block) const override { return !torrent_->hasBlock(block) && !swarm_->active_requests.has(block, peer_); } [[nodiscard]] bool clientCanRequestPiece(tr_piece_index_t piece) const override { return torrent_->pieceIsWanted(piece) && peer_->have.test(piece); } [[nodiscard]] bool isEndgame() const override { return swarm_->endgame; } [[nodiscard]] size_t countActiveRequests(tr_block_index_t block) const override { return swarm_->active_requests.count(block); } [[nodiscard]] size_t countMissingBlocks(tr_piece_index_t piece) const override { return torrent_->countMissingBlocksInPiece(piece); } [[nodiscard]] tr_block_span_t blockSpan(tr_piece_index_t piece) const override { return torrent_->blockSpanForPiece(piece); } [[nodiscard]] tr_piece_index_t countAllPieces() const override { return torrent_->pieceCount(); } [[nodiscard]] tr_priority_t priority(tr_piece_index_t piece) const override { return torrent_->piecePriority(piece); } private: tr_torrent const* const torrent_; tr_swarm const* const swarm_; tr_peer const* const peer_; }; auto* const swarm = torrent->swarm; updateEndgame(swarm); return Wishlist::next(MediatorImpl(torrent, peer), numwant); } /**** ***** ***** Piece List Manipulation / Accessors ***** ****/ bool tr_peerMgrDidPeerRequest(tr_torrent const* tor, tr_peer const* peer, tr_block_index_t block) { return tor->swarm->active_requests.has(block, peer); } size_t tr_peerMgrCountActiveRequestsToPeer(tr_torrent const* tor, tr_peer const* peer) { return tor->swarm->active_requests.count(peer); } static void maybeSendCancelRequest(tr_peer* peer, tr_block_index_t block, tr_peer const* muted) { auto* msgs = dynamic_cast(peer); if (msgs != nullptr && msgs != muted) { peer->cancelsSentToPeer.add(tr_time(), 1); msgs->cancel_block_request(block); } } static void cancelAllRequestsForBlock(tr_swarm* swarm, tr_block_index_t block, tr_peer const* no_notify) { for (auto* peer : swarm->active_requests.remove(block)) { maybeSendCancelRequest(peer, block, no_notify); } } static void tr_swarmCancelOldRequests(tr_swarm* swarm) { auto const now = tr_time(); auto const oldest = now - RequestTtlSecs; for (auto const& [block, peer] : swarm->active_requests.sentBefore(oldest)) { maybeSendCancelRequest(peer, block, nullptr); swarm->active_requests.remove(block, peer); } } static void refillUpkeep(evutil_socket_t /*fd*/, short /*what*/, void* vmgr) { auto* mgr = static_cast(vmgr); auto const lock = mgr->unique_lock(); auto& torrents = mgr->session->torrents(); std::for_each(std::begin(torrents), std::end(torrents), [](auto* tor) { tr_swarmCancelOldRequests(tor->swarm); }); tr_timerAddMsec(*mgr->refillUpkeepTimer, RefillUpkeepPeriodMsec); } static void addStrike(tr_swarm* s, tr_peer* peer) { tr_logAddTraceSwarm(s, fmt::format("increasing peer {} strike count to {}", tr_atomAddrStr(peer->atom), peer->strikes + 1)); if (++peer->strikes >= MaxBadPiecesPerPeer) { struct peer_atom* atom = peer->atom; atom->flags2 |= MyflagBanned; peer->doPurge = true; tr_logAddTraceSwarm(s, fmt::format("banning peer {}", tr_atomAddrStr(atom))); } } static void peerSuggestedPiece(tr_swarm* /*s*/, tr_peer* /*peer*/, tr_piece_index_t /*pieceIndex*/, bool /*isFastAllowed*/) { #if 0 TR_ASSERT(t != nullptr); TR_ASSERT(peer != nullptr); TR_ASSERT(peer->msgs != nullptr); /* is this a valid piece? */ if (pieceIndex >= t->tor->pieceCount()) { return; } /* don't ask for it if we've already got it */ if (t->tor->hasPiece(pieceIndex)) { return; } /* don't ask for it if they don't have it */ if (!peer->have.readBit(pieceIndex)) { return; } /* don't ask for it if we're choked and it's not fast */ if (!isFastAllowed && peer->clientIsChoked) { return; } /* request the blocks that we don't have in this piece */ { tr_torrent const* tor = t->tor; auto const [begin, end] = tor->blockSpanForPiece(pieceIndex); for (tr_block_index_t b = begin; b < end; ++b) { if (tor->hasBlock(b)) { uint32_t const offset = getBlockOffsetInPiece(tor, b); uint32_t const length = tor->blockSize(b); tr_peerMsgsAddRequest(peer->msgs, pieceIndex, offset, length); incrementPieceRequests(t, pieceIndex); } } } #endif } void tr_peerMgrPieceCompleted(tr_torrent* tor, tr_piece_index_t p) { bool pieceCameFromPeers = false; tr_swarm* const s = tor->swarm; /* walk through our peers */ for (int i = 0, n = tr_ptrArraySize(&s->peers); i < n; ++i) { auto* peer = static_cast(tr_ptrArrayNth(&s->peers, i)); // notify the peer that we now have this piece peer->on_piece_completed(p); if (!pieceCameFromPeers) { pieceCameFromPeers = peer->blame.test(p); } } if (pieceCameFromPeers) /* webseed downloads don't belong in announce totals */ { tr_announcerAddBytes(tor, TR_ANN_DOWN, tor->pieceSize(p)); } /* bookkeeping */ s->needsCompletenessCheck = true; } static void peerCallbackFunc(tr_peer* peer, tr_peer_event const* e, void* vs) { TR_ASSERT(peer != nullptr); auto* s = static_cast(vs); auto const lock = s->manager->unique_lock(); switch (e->eventType) { case TR_PEER_PEER_GOT_PIECE_DATA: { time_t const now = tr_time(); tr_torrent* tor = s->tor; tor->uploadedCur += e->length; tr_announcerAddBytes(tor, TR_ANN_UP, e->length); tor->setDateActive(now); tor->setDirty(); tr_statsAddUploaded(tor->session, e->length); if (peer->atom != nullptr) { peer->atom->piece_data_time = now; } break; } case TR_PEER_CLIENT_GOT_PIECE_DATA: { time_t const now = tr_time(); tr_torrent* tor = s->tor; tor->downloadedCur += e->length; tor->setDateActive(now); tor->setDirty(); tr_statsAddDownloaded(tor->session, e->length); if (peer->atom != nullptr) { peer->atom->piece_data_time = now; } break; } case TR_PEER_CLIENT_GOT_HAVE: case TR_PEER_CLIENT_GOT_HAVE_ALL: case TR_PEER_CLIENT_GOT_HAVE_NONE: case TR_PEER_CLIENT_GOT_BITFIELD: /* TODO: if we don't need these, should these events be removed? */ /* noop */ break; case TR_PEER_CLIENT_GOT_REJ: s->active_requests.remove(s->tor->pieceLoc(e->pieceIndex, e->offset).block, peer); break; case TR_PEER_CLIENT_GOT_CHOKE: s->active_requests.remove(peer); break; case TR_PEER_CLIENT_GOT_PORT: if (peer->atom != nullptr) { peer->atom->port = e->port; } break; case TR_PEER_CLIENT_GOT_SUGGEST: peerSuggestedPiece(s, peer, e->pieceIndex, false); break; case TR_PEER_CLIENT_GOT_ALLOWED_FAST: peerSuggestedPiece(s, peer, e->pieceIndex, true); break; case TR_PEER_CLIENT_GOT_BLOCK: { auto* const tor = s->tor; auto const loc = tor->pieceLoc(e->pieceIndex, e->offset); cancelAllRequestsForBlock(s, loc.block, peer); peer->blocksSentToClient.add(tr_time(), 1); tr_torrentGotBlock(tor, loc.block); break; } case TR_PEER_ERROR: if (e->err == ERANGE || e->err == EMSGSIZE || e->err == ENOTCONN) { /* some protocol error from the peer */ peer->doPurge = true; tr_logAddDebugSwarm( s, fmt::format( "setting {} doPurge flag because we got an ERANGE, EMSGSIZE, or ENOTCONN error", tr_atomAddrStr(peer->atom))); } else { tr_logAddDebugSwarm(s, fmt::format("unhandled error: {}", tr_strerror(e->err))); } break; default: TR_ASSERT_MSG(false, fmt::format(FMT_STRING("unhandled peer event type {:d}"), e->eventType)); } } static int getDefaultShelfLife(uint8_t from) { /* in general, peers obtained from firsthand contact * are better than those from secondhand, etc etc */ switch (from) { case TR_PEER_FROM_INCOMING: return 60 * 60 * 6; case TR_PEER_FROM_LTEP: return 60 * 60 * 6; case TR_PEER_FROM_TRACKER: return 60 * 60 * 3; case TR_PEER_FROM_DHT: return 60 * 60 * 3; case TR_PEER_FROM_PEX: return 60 * 60 * 2; case TR_PEER_FROM_RESUME: return 60 * 60; case TR_PEER_FROM_LPD: return 10 * 60; default: return 60 * 60; } } static struct peer_atom* ensureAtomExists( tr_swarm* s, tr_address const* addr, tr_port const port, uint8_t const flags, uint8_t const from) { TR_ASSERT(tr_address_is_valid(addr)); TR_ASSERT(from < TR_PEER_FROM__MAX); struct peer_atom* a = getExistingAtom(s, addr); if (a == nullptr) { int const jitter = tr_rand_int_weak(60 * 10); a = tr_new0(struct peer_atom, 1); a->addr = *addr; a->port = port; a->flags = flags; a->fromFirst = from; a->fromBest = from; a->shelf_date = tr_time() + getDefaultShelfLife(from) + jitter; a->blocklisted = -1; tr_ptrArrayInsertSorted(&s->pool, a, compareAtomsByAddress); tr_logAddTraceSwarm(s, fmt::format("got a new atom: {}", tr_atomAddrStr(a))); } else { if (from < a->fromBest) { a->fromBest = from; } a->flags |= flags; } s->poolIsAllSeedsDirty = true; return a; } static int getMaxPeerCount(tr_torrent const* tor) { return tor->maxConnectedPeers; } static int getPeerCount(tr_swarm const* s) { return tr_ptrArraySize(&s->peers); } static void createBitTorrentPeer(tr_torrent* tor, tr_peerIo* io, struct peer_atom* atom, tr_quark client) { TR_ASSERT(atom != nullptr); TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm != nullptr); tr_swarm* swarm = tor->swarm; auto* peer = tr_peerMsgsNew(tor, atom, io, peerCallbackFunc, swarm); peer->client = client; atom->peer = peer; tr_ptrArrayInsertSorted(&swarm->peers, peer, peerCompare); ++swarm->stats.peerCount; ++swarm->stats.peerFromCount[atom->fromFirst]; TR_ASSERT(swarm->stats.peerCount == tr_ptrArraySize(&swarm->peers)); TR_ASSERT(swarm->stats.peerFromCount[atom->fromFirst] <= swarm->stats.peerCount); // TODO is this needed? // isn't it already initialized in tr_peerMsgsImpl's ctor? peer->update_active(TR_UP); peer->update_active(TR_DOWN); } /* FIXME: this is kind of a mess. */ static bool on_handshake_done(tr_handshake_result const& result) { TR_ASSERT(result.io != nullptr); bool ok = result.isConnected; bool success = false; auto* manager = static_cast(result.userData); auto const hash = tr_peerIoGetTorrentHash(result.io); tr_swarm* const s = hash ? getExistingSwarm(manager, *hash) : nullptr; auto port = tr_port{}; auto const* const addr = tr_peerIoGetAddress(result.io, &port); if (tr_peerIoIsIncoming(result.io)) { manager->incoming_handshakes.erase(*addr); } else if (s != nullptr) { s->outgoing_handshakes.erase(*addr); } auto const lock = manager->unique_lock(); if (!ok || s == nullptr || !s->isRunning) { if (s != nullptr) { struct peer_atom* atom = getExistingAtom(s, addr); if (atom != nullptr) { ++atom->numFails; if (!result.readAnythingFromPeer) { tr_logAddTraceSwarm( s, fmt::format("marking peer {} as unreachable... numFails is {}", tr_atomAddrStr(atom), atom->numFails)); atom->flags2 |= MyflagUnreachable; } } } } else /* looking good */ { struct peer_atom* atom = ensureAtomExists(s, addr, port, 0, TR_PEER_FROM_INCOMING); atom->time = tr_time(); atom->piece_data_time = 0; atom->lastConnectionAt = tr_time(); if (!tr_peerIoIsIncoming(result.io)) { atom->flags |= ADDED_F_CONNECTABLE; atom->flags2 &= ~MyflagUnreachable; } /* In principle, this flag specifies whether the peer groks uTP, not whether it's currently connected over uTP. */ if (result.io->socket.type == TR_PEER_SOCKET_TYPE_UTP) { atom->flags |= ADDED_F_UTP_FLAGS; } if ((atom->flags2 & MyflagBanned) != 0) { tr_logAddTraceSwarm(s, fmt::format("banned peer {} tried to reconnect", tr_atomAddrStr(atom))); } else if (tr_peerIoIsIncoming(result.io) && getPeerCount(s) >= getMaxPeerCount(s->tor)) { /* too many peers already */ } else { tr_peer const* const peer = atom->peer; if (peer != nullptr) { /* we already have this peer */ } else { auto client = tr_quark{ TR_KEY_NONE }; if (result.peer_id) { char buf[128] = {}; tr_clientForId(buf, sizeof(buf), *result.peer_id); client = tr_quark_new(buf); } /* this steals its refcount too, which is balanced by our unref in peerDelete() */ tr_peerIo* stolen = tr_handshakeStealIO(result.handshake); tr_peerIoSetParent(stolen, &s->tor->bandwidth_); createBitTorrentPeer(s->tor, stolen, atom, client); success = true; } } } return success; } void tr_peerMgrAddIncoming(tr_peerMgr* manager, tr_address const* addr, tr_port port, struct tr_peer_socket const socket) { TR_ASSERT(tr_isSession(manager->session)); auto const lock = manager->unique_lock(); tr_session* session = manager->session; if (tr_sessionIsAddressBlocked(session, addr)) { tr_logAddTrace(fmt::format("Banned IP address '{}' tried to connect to us", tr_address_to_string(addr))); tr_netClosePeerSocket(session, socket); } else if (manager->incoming_handshakes.count(*addr) > 0) { tr_netClosePeerSocket(session, socket); } else /* we don't have a connection to them yet... */ { tr_peerIo* const io = tr_peerIoNewIncoming(session, &session->top_bandwidth_, addr, port, tr_time(), socket); tr_handshake* const handshake = tr_handshakeNew(io, session->encryptionMode, on_handshake_done, manager); tr_peerIoUnref(io); /* balanced by the implicit ref in tr_peerIoNewIncoming() */ manager->incoming_handshakes.try_emplace(*addr, handshake); } } void tr_peerMgrSetSwarmIsAllSeeds(tr_torrent* tor) { auto const lock = tor->unique_lock(); auto* const swarm = tor->swarm; auto atomCount = int{}; auto** atoms = (struct peer_atom**)tr_ptrArrayPeek(&swarm->pool, &atomCount); for (int i = 0; i < atomCount; ++i) { atomSetSeed(swarm, atoms[i]); } swarm->poolIsAllSeeds = true; swarm->poolIsAllSeedsDirty = false; } size_t tr_peerMgrAddPex(tr_torrent* tor, uint8_t from, tr_pex const* pex, size_t n_pex) { size_t n_used = 0; tr_swarm* s = tor->swarm; auto const lock = s->manager->unique_lock(); for (tr_pex const* const end = pex + n_pex; pex != end; ++pex) { if (tr_isPex(pex) && /* safeguard against corrupt data */ !tr_sessionIsAddressBlocked(s->manager->session, &pex->addr) && tr_address_is_valid_for_peers(&pex->addr, pex->port)) { ensureAtomExists(s, &pex->addr, pex->port, pex->flags, from); ++n_used; } } return n_used; } std::vector tr_peerMgrCompactToPex(void const* compact, size_t compactLen, uint8_t const* added_f, size_t added_f_len) { size_t n = compactLen / 6; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { pex[i].addr.type = TR_AF_INET; std::copy_n(walk, 4, reinterpret_cast(&pex[i].addr.addr)); walk += 4; std::copy_n(walk, 2, reinterpret_cast(&pex[i].port)); walk += 2; if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } std::vector tr_peerMgrCompact6ToPex(void const* compact, size_t compactLen, uint8_t const* added_f, size_t added_f_len) { size_t n = compactLen / 18; auto const* walk = static_cast(compact); auto pex = std::vector(n); for (size_t i = 0; i < n; ++i) { pex[i].addr.type = TR_AF_INET6; std::copy_n(walk, 16, reinterpret_cast(&pex[i].addr.addr.addr6.s6_addr)); walk += 16; std::copy_n(walk, 2, reinterpret_cast(&pex[i].port)); walk += 2; if (added_f != nullptr && n == added_f_len) { pex[i].flags = added_f[i]; } } return pex; } /** *** **/ void tr_peerMgrGotBadPiece(tr_torrent* tor, tr_piece_index_t pieceIndex) { tr_swarm* s = tor->swarm; uint32_t const byteCount = tor->pieceSize(pieceIndex); for (int i = 0, n = tr_ptrArraySize(&s->peers); i != n; ++i) { auto* const peer = static_cast(tr_ptrArrayNth(&s->peers, i)); if (peer->blame.test(pieceIndex)) { tr_logAddTraceSwarm( s, fmt::format( "peer {} contributed to corrupt piece ({}); now has {} strikes", tr_atomAddrStr(peer->atom), pieceIndex, peer->strikes + 1)); addStrike(s, peer); } } tr_announcerAddBytes(tor, TR_ANN_CORRUPT, byteCount); } int tr_pexCompare(void const* va, void const* vb) { auto const* const a = static_cast(va); auto const* const b = static_cast(vb); TR_ASSERT(tr_isPex(a)); TR_ASSERT(tr_isPex(b)); if (auto const i = tr_address_compare(&a->addr, &b->addr); i != 0) { return i; } if (a->port != b->port) { return a->port < b->port ? -1 : 1; } return 0; } /* better goes first */ static int compareAtomsByUsefulness(void const* va, void const* vb) { struct peer_atom const* a = *(struct peer_atom const* const*)va; struct peer_atom const* b = *(struct peer_atom const* const*)vb; TR_ASSERT(tr_isAtom(a)); TR_ASSERT(tr_isAtom(b)); if (a->piece_data_time != b->piece_data_time) { return a->piece_data_time > b->piece_data_time ? -1 : 1; } if (a->fromBest != b->fromBest) { return a->fromBest < b->fromBest ? -1 : 1; } if (a->numFails != b->numFails) { return a->numFails < b->numFails ? -1 : 1; } return 0; } static bool isAtomInteresting(tr_torrent const* tor, struct peer_atom* atom) { if (tor->isDone() && atomIsSeed(atom)) { return false; } if (peerIsInUse(tor->swarm, atom)) { return true; } if (isAtomBlocklisted(tor->session, atom)) { return false; } if ((atom->flags2 & MyflagBanned) != 0) { return false; } return true; } // TODO: return a std::vector int tr_peerMgrGetPeers(tr_torrent const* tor, tr_pex** setme_pex, uint8_t af, uint8_t list_mode, int maxCount) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(setme_pex != nullptr); TR_ASSERT(af == TR_AF_INET || af == TR_AF_INET6); TR_ASSERT(list_mode == TR_PEERS_CONNECTED || list_mode == TR_PEERS_INTERESTING); tr_swarm const* s = tor->swarm; /** *** build a list of atoms **/ auto atomCount = int{}; struct peer_atom** atoms = nullptr; if (list_mode == TR_PEERS_CONNECTED) /* connected peers only */ { auto const** peers = (tr_peer const**)tr_ptrArrayBase(&s->peers); atomCount = tr_ptrArraySize(&s->peers); atoms = tr_new(struct peer_atom*, atomCount); for (int i = 0; i < atomCount; ++i) { atoms[i] = peers[i]->atom; } } else /* TR_PEERS_INTERESTING */ { auto** atomBase = (struct peer_atom**)tr_ptrArrayBase(&s->pool); int const n = tr_ptrArraySize(&s->pool); atoms = tr_new(struct peer_atom*, n); for (int i = 0; i < n; ++i) { if (isAtomInteresting(tor, atomBase[i])) { atoms[atomCount++] = atomBase[i]; } } } qsort(atoms, atomCount, sizeof(struct peer_atom*), compareAtomsByUsefulness); /** *** add the first N of them into our return list **/ int const n = std::min(atomCount, maxCount); auto* const pex = tr_new0(tr_pex, n); tr_pex* walk = pex; auto count = int{}; for (int i = 0; i < atomCount && count < n; ++i) { auto const* const atom = atoms[i]; if (atom->addr.type == af) { TR_ASSERT(tr_address_is_valid(&atom->addr)); walk->addr = atom->addr; walk->port = atom->port; walk->flags = atom->flags; ++count; ++walk; } } qsort(pex, count, sizeof(tr_pex), tr_pexCompare); TR_ASSERT(walk - pex == count); *setme_pex = pex; /* cleanup */ tr_free(atoms); return count; } static void atomPulse(evutil_socket_t, short /*unused*/, void* /*vmgr*/); static void bandwidthPulse(evutil_socket_t, short /*unused*/, void* /*vmgr*/); static void rechokePulse(evutil_socket_t, short /*unused*/, void* /*vmgr*/); static void reconnectPulse(evutil_socket_t, short /*unused*/, void* /*vmgr*/); static struct event* createTimer(tr_session* session, int msec, event_callback_fn callback, void* cbdata) { struct event* timer = evtimer_new(session->event_base, callback, cbdata); tr_timerAddMsec(*timer, msec); return timer; } static void ensureMgrTimersExist(struct tr_peerMgr* m) { if (m->atomTimer == nullptr) { m->atomTimer = createTimer(m->session, AtomPeriodMsec, atomPulse, m); } if (m->bandwidthTimer == nullptr) { m->bandwidthTimer = createTimer(m->session, BandwidthPeriodMsec, bandwidthPulse, m); } if (m->rechokeTimer == nullptr) { m->rechokeTimer = createTimer(m->session, RechokePeriodMsec, rechokePulse, m); } if (m->refillUpkeepTimer == nullptr) { m->refillUpkeepTimer = createTimer(m->session, RefillUpkeepPeriodMsec, refillUpkeep, m); } } void tr_peerMgrStartTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); tr_swarm* s = tor->swarm; ensureMgrTimersExist(s->manager); s->isRunning = true; s->maxPeers = tor->maxConnectedPeers; // rechoke soon tr_timerAddMsec(*s->manager->rechokeTimer, 100); } static void removeAllPeers(tr_swarm* /*swarm*/); static void stopSwarm(tr_swarm* swarm) { swarm->isRunning = false; removeAllPeers(swarm); /* disconnect the handshakes. handshakeAbort calls handshakeDoneCB(), * which removes the handshake from t->outgoing_handshakes... */ while (!std::empty(swarm->outgoing_handshakes)) { tr_handshakeAbort(std::begin(swarm->outgoing_handshakes)->second); } } void tr_peerMgrStopTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); stopSwarm(tor->swarm); } void tr_peerMgrAddTorrent(tr_peerMgr* manager, tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); TR_ASSERT(tor->swarm == nullptr); tor->swarm = swarmNew(manager, tor); } void tr_peerMgrRemoveTorrent(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); stopSwarm(tor->swarm); swarmFree(tor->swarm); } void tr_peerUpdateProgress(tr_torrent* tor, tr_peer* peer) { if (auto const* have = &peer->have; have->hasAll()) { peer->progress = 1.0; } else if (have->hasNone()) { peer->progress = 0.0; } else { float const true_count = have->count(); if (tor->hasMetainfo()) { peer->progress = true_count / float(tor->pieceCount()); } else // without pieceCount, this result is only a best guess... { peer->progress = true_count / float(have->size() + 1); } } peer->progress = std::clamp(peer->progress, 0.0F, 1.0F); if (peer->atom != nullptr && peer->progress >= 1.0F) { atomSetSeed(tor->swarm, peer->atom); } } void tr_peerMgrOnTorrentGotMetainfo(tr_torrent* tor) { /* the webseed list may have changed... */ rebuildWebseedArray(tor->swarm, tor); /* some peer_msgs' progress fields may not be accurate if we didn't have the metadata before now... so refresh them all... */ int const peerCount = tr_ptrArraySize(&tor->swarm->peers); auto** const peers = (tr_peer**)tr_ptrArrayBase(&tor->swarm->peers); for (int i = 0; i < peerCount; ++i) { tr_peerUpdateProgress(tor, peers[i]); } /* update the bittorrent peers' willingness... */ for (int i = 0; i < peerCount; ++i) { auto* msgs = static_cast(peers[i]); msgs->update_active(TR_UP); msgs->update_active(TR_DOWN); } } void tr_peerMgrTorrentAvailability(tr_torrent const* tor, int8_t* tab, unsigned int tabCount) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tab != nullptr); TR_ASSERT(tabCount > 0); std::fill_n(tab, tabCount, int8_t{}); if (tor->hasMetainfo()) { int const peerCount = tr_ptrArraySize(&tor->swarm->peers); auto const** peers = (tr_peer const**)tr_ptrArrayBase(&tor->swarm->peers); float const interval = tor->pieceCount() / (float)tabCount; auto const isSeed = tor->isSeed(); for (tr_piece_index_t i = 0; i < tabCount; ++i) { int const piece = i * interval; if (isSeed || tor->hasPiece(piece)) { tab[i] = -1; } else if (peerCount != 0) { for (int j = 0; j < peerCount; ++j) { if (peers[j]->have.test(piece)) { ++tab[i]; } } } } } } void tr_swarmGetStats(tr_swarm const* swarm, tr_swarm_stats* setme) { TR_ASSERT(swarm != nullptr); TR_ASSERT(setme != nullptr); *setme = swarm->stats; } void tr_swarmIncrementActivePeers(tr_swarm* swarm, tr_direction direction, bool is_active) { int n = swarm->stats.activePeerCount[direction]; if (is_active) { ++n; } else { --n; } TR_ASSERT(n >= 0); TR_ASSERT(n <= swarm->stats.peerCount); swarm->stats.activePeerCount[direction] = n; } bool tr_peerIsSeed(tr_peer const* peer) { return (peer != nullptr) && ((peer->progress >= 1.0) || atomIsSeed(peer->atom)); } /* count how many bytes we want that connected peers have */ uint64_t tr_peerMgrGetDesiredAvailable(tr_torrent const* tor) { TR_ASSERT(tr_isTorrent(tor)); // common shortcuts... if (!tor->isRunning || tor->isStopping || tor->isDone() || !tor->hasMetainfo()) { return 0; } tr_swarm const* const s = tor->swarm; if (s == nullptr || !s->isRunning) { return 0; } size_t const n_peers = tr_ptrArraySize(&s->peers); if (n_peers == 0) { return 0; } auto const** const peers = (tr_peer const**)tr_ptrArrayBase(&s->peers); for (size_t i = 0; i < n_peers; ++i) { if (peers[i]->atom != nullptr && atomIsSeed(peers[i]->atom)) { return tor->leftUntilDone(); } } // do it the hard way auto desired_available = uint64_t{}; auto const n_pieces = tor->pieceCount(); auto have = std::vector(n_pieces); for (size_t i = 0; i < n_peers; ++i) { auto const* const peer = peers[i]; for (size_t j = 0; j < n_pieces; ++j) { if (peer->have.test(j)) { have[j] = true; } } } for (size_t i = 0; i < n_pieces; ++i) { if (tor->pieceIsWanted(i) && have.at(i)) { desired_available += tor->countMissingBytesInPiece(i); } } TR_ASSERT(desired_available <= tor->totalSize()); return desired_available; } tr_webseed_view tr_peerMgrWebseed(tr_torrent const* tor, size_t i) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm != nullptr); size_t const n = std::size(tor->swarm->webseeds); TR_ASSERT(i < n); return i >= n ? tr_webseed_view{} : tr_webseedView(tor->swarm->webseeds[i].get()); } static auto getPeerStats(tr_peerMsgs const* peer, time_t now, uint64_t now_msec) { auto stats = tr_peer_stat{}; auto const* const atom = peer->atom; tr_address_to_string_with_buf(&atom->addr, stats.addr, sizeof(stats.addr)); stats.client = peer->client.c_str(); stats.port = ntohs(peer->atom->port); stats.from = atom->fromFirst; stats.progress = peer->progress; stats.isUTP = peer->is_utp_connection(); stats.isEncrypted = peer->is_encrypted(); stats.rateToPeer_KBps = tr_toSpeedKBps(tr_peerGetPieceSpeed_Bps(peer, now_msec, TR_CLIENT_TO_PEER)); stats.rateToClient_KBps = tr_toSpeedKBps(tr_peerGetPieceSpeed_Bps(peer, now_msec, TR_PEER_TO_CLIENT)); stats.peerIsChoked = peer->is_peer_choked(); stats.peerIsInterested = peer->is_peer_interested(); stats.clientIsChoked = peer->is_client_choked(); stats.clientIsInterested = peer->is_client_interested(); stats.isIncoming = peer->is_incoming_connection(); stats.isDownloadingFrom = peer->is_active(TR_PEER_TO_CLIENT); stats.isUploadingTo = peer->is_active(TR_CLIENT_TO_PEER); stats.isSeed = tr_peerIsSeed(peer); stats.blocksToPeer = peer->blocksSentToPeer.count(now, CancelHistorySec); stats.blocksToClient = peer->blocksSentToClient.count(now, CancelHistorySec); stats.cancelsToPeer = peer->cancelsSentToPeer.count(now, CancelHistorySec); stats.cancelsToClient = peer->cancelsSentToClient.count(now, CancelHistorySec); stats.pendingReqsToPeer = peer->swarm->active_requests.count(peer); stats.pendingReqsToClient = peer->pendingReqsToClient; char* pch = stats.flagStr; if (stats.isUTP) { *pch++ = 'T'; } if (peer->swarm->optimistic == peer) { *pch++ = 'O'; } if (stats.isDownloadingFrom) { *pch++ = 'D'; } else if (stats.clientIsInterested) { *pch++ = 'd'; } if (stats.isUploadingTo) { *pch++ = 'U'; } else if (stats.peerIsInterested) { *pch++ = 'u'; } if (!stats.clientIsChoked && !stats.clientIsInterested) { *pch++ = 'K'; } if (!stats.peerIsChoked && !stats.peerIsInterested) { *pch++ = '?'; } if (stats.isEncrypted) { *pch++ = 'E'; } if (stats.from == TR_PEER_FROM_DHT) { *pch++ = 'H'; } else if (stats.from == TR_PEER_FROM_PEX) { *pch++ = 'X'; } if (stats.isIncoming) { *pch++ = 'I'; } *pch = '\0'; return stats; } struct tr_peer_stat* tr_peerMgrPeerStats(tr_torrent const* tor, int* setmeCount) { TR_ASSERT(tr_isTorrent(tor)); TR_ASSERT(tor->swarm->manager != nullptr); auto** peers = (tr_peerMsgs**)tr_ptrArrayBase(&tor->swarm->peers); int const size = tr_ptrArraySize(&tor->swarm->peers); auto* const ret = tr_new0(tr_peer_stat, size); time_t const now = tr_time(); uint64_t const now_msec = tr_time_msec(); for (int i = 0; i < size; ++i) { ret[i] = getPeerStats(peers[i], now, now_msec); } *setmeCount = size; return ret; } /*** **** **** ***/ void tr_peerMgrClearInterest(tr_torrent* tor) { TR_ASSERT(tr_isTorrent(tor)); auto const lock = tor->unique_lock(); tr_swarm* s = tor->swarm; int const peerCount = tr_ptrArraySize(&s->peers); for (int i = 0; i < peerCount; ++i) { static_cast(tr_ptrArrayNth(&s->peers, i))->set_interested(false); } } /* does this peer have any pieces that we want? */ static bool isPeerInteresting(tr_torrent* const tor, bool const* const piece_is_interesting, tr_peer const* const peer) { /* these cases should have already been handled by the calling code... */ TR_ASSERT(!tor->isDone()); TR_ASSERT(tor->clientCanDownload()); if (tr_peerIsSeed(peer)) { return true; } for (tr_piece_index_t i = 0; i < tor->pieceCount(); ++i) { if (piece_is_interesting[i] && peer->have.test(i)) { return true; } } return false; } enum tr_rechoke_state { RECHOKE_STATE_GOOD, RECHOKE_STATE_UNTESTED, RECHOKE_STATE_BAD }; struct tr_rechoke_info { tr_peerMsgs* peer; int salt; int rechoke_state; }; static constexpr int compare_rechoke_info(void const* va, void const* vb) { auto const* const a = static_cast(va); auto const* const b = static_cast(vb); if (a->rechoke_state != b->rechoke_state) { return a->rechoke_state - b->rechoke_state; } return a->salt - b->salt; } /* determines who we send "interested" messages to */ static void rechokeDownloads(tr_swarm* s) { int maxPeers = 0; int rechoke_count = 0; struct tr_rechoke_info* rechoke = nullptr; auto constexpr MinInterestingPeers = 5; int const peerCount = tr_ptrArraySize(&s->peers); time_t const now = tr_time(); /* some cases where this function isn't necessary */ if (s->tor->isDone() || !s->tor->clientCanDownload()) { return; } /* decide HOW MANY peers to be interested in */ { int blocks = 0; int cancels = 0; /* Count up how many blocks & cancels each peer has. * * There are two situations where we send out cancels -- * * 1. We've got unresponsive peers, which is handled by deciding * -which- peers to be interested in. * * 2. We've hit our bandwidth cap, which is handled by deciding * -how many- peers to be interested in. * * We're working on 2. here, so we need to ignore unresponsive * peers in our calculations lest they confuse Transmission into * thinking it's hit its bandwidth cap. */ for (int i = 0; i < peerCount; ++i) { auto const* const peer = static_cast(tr_ptrArrayNth(&s->peers, i)); auto const b = peer->blocksSentToClient.count(now, CancelHistorySec); auto const c = peer->cancelsSentToPeer.count(now, CancelHistorySec); if (b == 0) /* ignore unresponsive peers, as described above */ { continue; } blocks += b; cancels += c; } if (cancels > 0) { /* cancelRate: of the block requests we've recently made, the percentage we cancelled. * higher values indicate more congestion. */ double const cancelRate = cancels / (double)(cancels + blocks); double const mult = 1 - std::min(cancelRate, 0.5); maxPeers = s->interestedCount * mult; tr_logAddTraceSwarm( s, fmt::format( "cancel rate is {} -- reducing the number of peers we're interested in by {} percent", cancelRate, mult * 100)); s->lastCancel = now; } time_t const timeSinceCancel = now - s->lastCancel; if (timeSinceCancel != 0) { int const maxIncrease = 15; time_t const maxHistory = 2 * CancelHistorySec; double const mult = std::min(timeSinceCancel, maxHistory) / (double)maxHistory; int const inc = maxIncrease * mult; maxPeers = s->maxPeers + inc; tr_logAddTraceSwarm( s, fmt::format( "time since last cancel is {} -- increasing the number of peers we're interested in by {}", timeSinceCancel, inc)); } } /* don't let the previous section's number tweaking go too far... */ maxPeers = std::clamp(maxPeers, MinInterestingPeers, int(s->tor->maxConnectedPeers)); s->maxPeers = maxPeers; if (peerCount > 0) { tr_torrent const* const tor = s->tor; int const n = tor->pieceCount(); /* build a bitfield of interesting pieces... */ auto* const piece_is_interesting = tr_new(bool, n); for (int i = 0; i < n; ++i) { piece_is_interesting[i] = tor->pieceIsWanted(i) && !tor->hasPiece(i); } /* decide WHICH peers to be interested in (based on their cancel-to-block ratio) */ for (int i = 0; i < peerCount; ++i) { auto* const peer = static_cast(tr_ptrArrayNth(&s->peers, i)); if (!isPeerInteresting(s->tor, piece_is_interesting, peer)) { peer->set_interested(false); } else { auto rechoke_state = tr_rechoke_state{}; auto const blocks = peer->blocksSentToClient.count(now, CancelHistorySec); auto const cancels = peer->cancelsSentToPeer.count(now, CancelHistorySec); if (blocks == 0 && cancels == 0) { rechoke_state = RECHOKE_STATE_UNTESTED; } else if (cancels == 0) { rechoke_state = RECHOKE_STATE_GOOD; } else if (blocks == 0) { rechoke_state = RECHOKE_STATE_BAD; } else if (cancels * 10 < blocks) { rechoke_state = RECHOKE_STATE_GOOD; } else { rechoke_state = RECHOKE_STATE_BAD; } if (rechoke == nullptr) { rechoke = tr_new(struct tr_rechoke_info, peerCount); } rechoke[rechoke_count].peer = peer; rechoke[rechoke_count].rechoke_state = rechoke_state; rechoke[rechoke_count].salt = tr_rand_int_weak(INT_MAX); rechoke_count++; } } tr_free(piece_is_interesting); } if ((rechoke != nullptr) && (rechoke_count > 0)) { qsort(rechoke, rechoke_count, sizeof(struct tr_rechoke_info), compare_rechoke_info); } /* now that we know which & how many peers to be interested in... update the peer interest */ s->interestedCount = std::min(maxPeers, rechoke_count); for (int i = 0; i < rechoke_count; ++i) { rechoke[i].peer->set_interested(i < s->interestedCount); } /* cleanup */ tr_free(rechoke); } /** *** **/ struct ChokeData { bool isInterested; bool wasChoked; bool isChoked; int rate; int salt; tr_peerMsgs* msgs; }; static int compareChoke(void const* va, void const* vb) { auto const* const a = static_cast(va); auto const* const b = static_cast(vb); if (a->rate != b->rate) /* prefer higher overall speeds */ { return a->rate > b->rate ? -1 : 1; } if (a->wasChoked != b->wasChoked) /* prefer unchoked */ { return a->wasChoked ? 1 : -1; } if (a->salt != b->salt) /* random order */ { return a->salt - b->salt; } return 0; } /* is this a new connection? */ static bool isNew(tr_peerMsgs const* msgs) { auto constexpr CutoffSecs = time_t{ 45 }; return msgs != nullptr && !msgs->is_connection_older_than(tr_time() - CutoffSecs); } /* get a rate for deciding which peers to choke and unchoke. */ static int getRate(tr_torrent const* tor, struct peer_atom const* atom, uint64_t now) { auto Bps = unsigned{}; if (tor->isDone()) { Bps = tr_peerGetPieceSpeed_Bps(atom->peer, now, TR_CLIENT_TO_PEER); } /* downloading a private torrent... take upload speed into account * because there may only be a small window of opportunity to share */ else if (tor->isPrivate()) { Bps = tr_peerGetPieceSpeed_Bps(atom->peer, now, TR_PEER_TO_CLIENT) + tr_peerGetPieceSpeed_Bps(atom->peer, now, TR_CLIENT_TO_PEER); } /* downloading a public torrent */ else { Bps = tr_peerGetPieceSpeed_Bps(atom->peer, now, TR_PEER_TO_CLIENT); } /* convert it to bytes per second */ return Bps; } static inline bool isBandwidthMaxedOut(Bandwidth const& b, uint64_t const now_msec, tr_direction dir) { if (!b.isLimited(dir)) { return false; } unsigned int const got = b.getPieceSpeedBytesPerSecond(now_msec, dir); unsigned int const want = b.getDesiredSpeedBytesPerSecond(dir); return got >= want; } static void rechokeUploads(tr_swarm* s, uint64_t const now) { auto const lock = s->manager->unique_lock(); int const peerCount = tr_ptrArraySize(&s->peers); auto** peers = (tr_peerMsgs**)tr_ptrArrayBase(&s->peers); auto* const choke = tr_new0(struct ChokeData, peerCount); tr_session const* session = s->manager->session; bool const chokeAll = !s->tor->clientCanUpload(); bool const isMaxedOut = isBandwidthMaxedOut(s->tor->bandwidth_, now, TR_UP); /* an optimistic unchoke peer's "optimistic" * state lasts for N calls to rechokeUploads(). */ if (s->optimisticUnchokeTimeScaler > 0) { s->optimisticUnchokeTimeScaler--; } else { s->optimistic = nullptr; } int size = 0; /* sort the peers by preference and rate */ for (int i = 0; i < peerCount; ++i) { auto* const peer = peers[i]; peer_atom const* const atom = peer->atom; if (tr_peerIsSeed(peer)) { /* choke seeds and partial seeds */ peer->set_choke(true); } else if (chokeAll) { /* choke everyone if we're not uploading */ peer->set_choke(true); } else if (peer != s->optimistic) { struct ChokeData* n = &choke[size++]; n->msgs = peer; n->isInterested = peer->is_peer_interested(); n->wasChoked = peer->is_peer_choked(); n->rate = getRate(s->tor, atom, now); n->salt = tr_rand_int_weak(INT_MAX); n->isChoked = true; } } qsort(choke, size, sizeof(struct ChokeData), compareChoke); /** * Reciprocation and number of uploads capping is managed by unchoking * the N peers which have the best upload rate and are interested. * This maximizes the client's download rate. These N peers are * referred to as downloaders, because they are interested in downloading * from the client. * * Peers which have a better upload rate (as compared to the downloaders) * but aren't interested get unchoked. If they become interested, the * downloader with the worst upload rate gets choked. If a client has * a complete file, it uses its upload rate rather than its download * rate to decide which peers to unchoke. * * If our bandwidth is maxed out, don't unchoke any more peers. */ int checkedChokeCount = 0; int unchokedInterested = 0; for (int i = 0; i < size && unchokedInterested < session->uploadSlotsPerTorrent; ++i) { choke[i].isChoked = isMaxedOut ? choke[i].wasChoked : false; ++checkedChokeCount; if (choke[i].isInterested) { ++unchokedInterested; } } /* optimistic unchoke */ if (s->optimistic == nullptr && !isMaxedOut && checkedChokeCount < size) { auto randPool = std::vector{}; for (int i = checkedChokeCount; i < size; ++i) { if (choke[i].isInterested) { tr_peerMsgs const* msgs = choke[i].msgs; int const x = isNew(msgs) ? 3 : 1; for (int y = 0; y < x; ++y) { randPool.push_back(&choke[i]); } } } auto const n = std::size(randPool); if (n != 0) { auto* c = randPool[tr_rand_int_weak(n)]; c->isChoked = false; s->optimistic = c->msgs; s->optimisticUnchokeTimeScaler = OptimisticUnchokeMultiplier; } } for (int i = 0; i < size; ++i) { choke[i].msgs->set_choke(choke[i].isChoked); } /* cleanup */ tr_free(choke); } static void rechokePulse(evutil_socket_t /*fd*/, short /*what*/, void* vmgr) { auto* mgr = static_cast(vmgr); auto const lock = mgr->unique_lock(); uint64_t const now = tr_time_msec(); for (auto* const tor : mgr->session->torrents()) { if (tor->isRunning) { tr_swarm* s = tor->swarm; if (s->stats.peerCount > 0) { rechokeUploads(s, now); rechokeDownloads(s); } } } tr_timerAddMsec(*mgr->rechokeTimer, RechokePeriodMsec); } /*** **** **** Life and Death **** ***/ static bool shouldPeerBeClosed(tr_swarm const* s, tr_peer const* peer, int peerCount, time_t const now) { tr_torrent const* tor = s->tor; struct peer_atom const* atom = peer->atom; /* if it's marked for purging, close it */ if (peer->doPurge) { tr_logAddTraceSwarm(s, fmt::format("purging peer {} because its doPurge flag is set", tr_atomAddrStr(atom))); return true; } /* disconnect if we're both seeds and enough time has passed for PEX */ if (tor->isDone() && tr_peerIsSeed(peer)) { return !tor->allowsPex() || now - atom->time >= 30; } /* disconnect if it's been too long since piece data has been transferred. * this is on a sliding scale based on number of available peers... */ { auto const relaxStrictnessIfFewerThanN = std::lround(getMaxPeerCount(tor) * 0.9); /* if we have >= relaxIfFewerThan, strictness is 100%. * if we have zero connections, strictness is 0% */ float const strictness = peerCount >= relaxStrictnessIfFewerThanN ? 1.0 : peerCount / (float)relaxStrictnessIfFewerThanN; int const lo = MinUploadIdleSecs; int const hi = MaxUploadIdleSecs; int const limit = hi - (hi - lo) * strictness; int const idleTime = now - std::max(atom->time, atom->piece_data_time); if (idleTime > limit) { tr_logAddTraceSwarm( s, fmt::format( "purging peer {} because it's been {} secs since we shared anything", tr_atomAddrStr(atom), idleTime)); return true; } } return false; } static int getReconnectIntervalSecs(struct peer_atom const* atom, time_t const now) { auto sec = int{}; bool const unreachable = (atom->flags2 & MyflagUnreachable) != 0; /* if we were recently connected to this peer and transferring piece * data, try to reconnect to them sooner rather that later -- we don't * want network troubles to get in the way of a good peer. */ if (!unreachable && now - atom->piece_data_time <= MinimumReconnectIntervalSecs * 2) { sec = MinimumReconnectIntervalSecs; } /* otherwise, the interval depends on how many times we've tried * and failed to connect to the peer */ else { int step = atom->numFails; /* penalize peers that were unreachable the last time we tried */ if (unreachable) { step += 2; } switch (step) { case 0: sec = 0; break; case 1: sec = 10; break; case 2: sec = 60 * 2; break; case 3: sec = 60 * 15; break; case 4: sec = 60 * 30; break; case 5: sec = 60 * 60; break; default: sec = 60 * 120; break; } } tr_logAddTrace(fmt::format("reconnect interval for {} is {} seconds", tr_atomAddrStr(atom), sec)); return sec; } static void removePeer(tr_peer* peer) { auto* const s = peer->swarm; auto const lock = s->manager->unique_lock(); struct peer_atom* atom = peer->atom; TR_ASSERT(atom != nullptr); atom->time = tr_time(); tr_ptrArrayRemoveSortedPointer(&s->peers, peer, peerCompare); --s->stats.peerCount; --s->stats.peerFromCount[atom->fromFirst]; TR_ASSERT(s->stats.peerCount == tr_ptrArraySize(&s->peers)); TR_ASSERT(s->stats.peerFromCount[atom->fromFirst] >= 0); delete peer; } static void closePeer(tr_peer* peer) { TR_ASSERT(peer != nullptr); auto const* const s = peer->swarm; /* if we transferred piece data, then they might be good peers, so reset their `numFails' weight to zero. otherwise we connected to them fruitlessly, so mark it as another fail */ if (auto* const atom = peer->atom; atom->piece_data_time != 0) { tr_logAddTraceSwarm(s, fmt::format("resetting atom {} numFails to 0", tr_atomAddrStr(atom))); atom->numFails = 0; } else { ++atom->numFails; tr_logAddTraceSwarm(s, fmt::format("incremented atom {} numFails to {}", tr_atomAddrStr(atom), atom->numFails)); } tr_logAddTraceSwarm(s, fmt::format("removing bad peer {}", tr_atomAddrStr(peer->atom))); removePeer(peer); } static void removeAllPeers(tr_swarm* swarm) { size_t const n = tr_ptrArraySize(&swarm->peers); auto** base = (tr_peer**)tr_ptrArrayBase(&swarm->peers); for (auto* peer : std::vector{ base, base + n }) { removePeer(peer); } TR_ASSERT(swarm->stats.peerCount == 0); } static auto getPeersToClose(tr_swarm* s, time_t const now_sec) { auto peerCount = int{}; auto** const peers = (tr_peer**)tr_ptrArrayPeek(&s->peers, &peerCount); auto peers_to_close = std::vector{}; auto test = [=](auto* peer) { return shouldPeerBeClosed(s, peer, peerCount, now_sec); }; std::copy_if(peers, peers + peerCount, std::back_inserter(peers_to_close), test); return peers_to_close; } static void closeBadPeers(tr_swarm* s, time_t const now_sec) { auto const lock = s->manager->unique_lock(); for (auto* peer : getPeersToClose(s, now_sec)) { closePeer(peer); } } struct ComparePeerByActivity { static int compare(tr_peer const* a, tr_peer const* b) // <=> { if (a->doPurge != b->doPurge) { return a->doPurge ? 1 : -1; } /* the one to give us data more recently goes first */ if (a->atom->piece_data_time != b->atom->piece_data_time) { return a->atom->piece_data_time > b->atom->piece_data_time ? -1 : 1; } /* the one we connected to most recently goes first */ if (a->atom->time != b->atom->time) { return a->atom->time > b->atom->time ? -1 : 1; } return 0; } bool operator()(tr_peer const* a, tr_peer const* b) const // less then { return compare(a, b) < 0; } }; static void enforceTorrentPeerLimit(tr_swarm* s) { // do we have too many peers? int n = tr_ptrArraySize(&s->peers); int const max = tr_torrentGetPeerLimit(s->tor); if (n <= max) { return; } // close all but the `max` most active auto peers = std::vector{}; peers.reserve(n); auto** base = (tr_peer**)tr_ptrArrayBase(&s->peers); std::copy_n(base, n, std::back_inserter(peers)); std::partial_sort(std::begin(peers), std::begin(peers) + max, std::end(peers), ComparePeerByActivity{}); std::for_each(std::begin(peers) + max, std::end(peers), closePeer); } static void enforceSessionPeerLimit(tr_session* session) { // do we have too many peers? auto const& torrents = session->torrents(); size_t const n_peers = std::accumulate( std::begin(torrents), std::end(torrents), size_t{}, [](size_t sum, tr_torrent const* tor) { return sum + tr_ptrArraySize(&tor->swarm->peers); }); size_t const max = tr_sessionGetPeerLimit(session); if (n_peers <= max) { return; } // make a list of all the peers auto peers = std::vector{}; peers.reserve(n_peers); for (auto const* const tor : session->torrents()) { size_t const n = tr_ptrArraySize(&tor->swarm->peers); auto** base = (tr_peer**)tr_ptrArrayBase(&tor->swarm->peers); std::copy_n(base, n, std::back_inserter(peers)); } // close all but the `max` most active std::partial_sort(std::begin(peers), std::begin(peers) + max, std::end(peers), ComparePeerByActivity{}); std::for_each(std::begin(peers) + max, std::end(peers), closePeer); } static void makeNewPeerConnections(tr_peerMgr* mgr, size_t max); static void reconnectPulse(evutil_socket_t /*fd*/, short /*what*/, void* vmgr) { auto* mgr = static_cast(vmgr); time_t const now_sec = tr_time(); // remove crappy peers for (auto* const tor : mgr->session->torrents()) { if (!tor->swarm->isRunning) { removeAllPeers(tor->swarm); } else { closeBadPeers(tor->swarm, now_sec); } } // if we're over the per-torrent peer limits, cull some peers for (auto* const tor : mgr->session->torrents()) { if (tor->isRunning) { enforceTorrentPeerLimit(tor->swarm); } } // if we're over the per-session peer limits, cull some peers enforceSessionPeerLimit(mgr->session); // try to make new peer connections auto const max_connections_per_pulse = int(MaxConnectionsPerSecond * (ReconnectPeriodMsec / 1000.0)); makeNewPeerConnections(mgr, max_connections_per_pulse); } /**** ***** ***** BANDWIDTH ALLOCATION ***** ****/ static void pumpAllPeers(tr_peerMgr* mgr) { for (auto* const tor : mgr->session->torrents()) { tr_swarm* s = tor->swarm; for (int j = 0, n = tr_ptrArraySize(&s->peers); j < n; ++j) { static_cast(tr_ptrArrayNth(&s->peers, j))->pulse(); } } } static void queuePulse(tr_session* session, tr_direction dir) { TR_ASSERT(tr_isSession(session)); TR_ASSERT(tr_isDirection(dir)); if (tr_sessionGetQueueEnabled(session, dir)) { auto const n = tr_sessionCountQueueFreeSlots(session, dir); for (auto* tor : tr_sessionGetNextQueuedTorrents(session, dir, n)) { tr_torrentStartNow(tor); if (tor->queue_started_callback != nullptr) { (*tor->queue_started_callback)(tor, tor->queue_started_user_data); } } } } static void bandwidthPulse(evutil_socket_t /*fd*/, short /*what*/, void* vmgr) { auto* mgr = static_cast(vmgr); auto const lock = mgr->unique_lock(); tr_session* session = mgr->session; pumpAllPeers(mgr); /* allocate bandwidth to the peers */ session->top_bandwidth_.allocate(TR_UP, BandwidthPeriodMsec); session->top_bandwidth_.allocate(TR_DOWN, BandwidthPeriodMsec); /* torrent upkeep */ for (auto* const tor : session->torrents()) { /* possibly stop torrents that have seeded enough */ tr_torrentCheckSeedLimit(tor); /* run the completeness check for any torrents that need it */ if (tor->swarm->needsCompletenessCheck) { tor->swarm->needsCompletenessCheck = false; tor->recheckCompleteness(); } /* stop torrents that are ready to stop, but couldn't be stopped earlier during the peer-io callback call chain */ if (tor->isStopping) { tr_torrentStop(tor); } /* update the torrent's stats */ tor->swarm->stats.activeWebseedCount = countActiveWebseeds(tor->swarm); } /* pump the queues */ queuePulse(session, TR_UP); queuePulse(session, TR_DOWN); reconnectPulse(0, 0, mgr); tr_timerAddMsec(*mgr->bandwidthTimer, BandwidthPeriodMsec); } /*** **** ***/ static int compareAtomPtrsByAddress(void const* va, void const* vb) { struct peer_atom const* a = *(struct peer_atom const* const*)va; struct peer_atom const* b = *(struct peer_atom const* const*)vb; TR_ASSERT(tr_isAtom(a)); TR_ASSERT(tr_isAtom(b)); return tr_address_compare(&a->addr, &b->addr); } /* best come first, worst go last */ static int compareAtomPtrsByShelfDate(void const* va, void const* vb) { struct peer_atom const* a = *(struct peer_atom const* const*)va; struct peer_atom const* b = *(struct peer_atom const* const*)vb; TR_ASSERT(tr_isAtom(a)); TR_ASSERT(tr_isAtom(b)); int const data_time_cutoff_secs = 60 * 60; time_t const tr_now = tr_time(); /* primary key: the last piece data time *if* it was within the last hour */ time_t atime = a->piece_data_time; if (atime + data_time_cutoff_secs < tr_now) { atime = 0; } time_t btime = b->piece_data_time; if (btime + data_time_cutoff_secs < tr_now) { btime = 0; } if (atime != btime) { return atime > btime ? -1 : 1; } /* secondary key: shelf date. */ if (a->shelf_date != b->shelf_date) { return a->shelf_date > b->shelf_date ? -1 : 1; } return 0; } static int getMaxAtomCount(tr_torrent const* tor) { return std::min(50, tor->maxConnectedPeers * 3); } static void atomPulse(evutil_socket_t /*fd*/, short /*what*/, void* vmgr) { auto* mgr = static_cast(vmgr); auto const lock = mgr->unique_lock(); for (auto* const tor : mgr->session->torrents()) { tr_swarm* s = tor->swarm; int const maxAtomCount = getMaxAtomCount(tor); auto atomCount = int{}; auto** const atoms = (peer_atom**)tr_ptrArrayPeek(&s->pool, &atomCount); if (atomCount > maxAtomCount) /* we've got too many atoms... time to prune */ { int keepCount = 0; int testCount = 0; auto** keep = tr_new(struct peer_atom*, atomCount); auto** test = tr_new(struct peer_atom*, atomCount); /* keep the ones that are in use */ for (int i = 0; i < atomCount; ++i) { struct peer_atom* atom = atoms[i]; if (peerIsInUse(s, atom)) { keep[keepCount++] = atom; } else { test[testCount++] = atom; } } /* if there's room, keep the best of what's left */ int i = 0; if (keepCount < maxAtomCount) { qsort(test, testCount, sizeof(struct peer_atom*), compareAtomPtrsByShelfDate); while (i < testCount && keepCount < maxAtomCount) { keep[keepCount++] = test[i++]; } } /* free the culled atoms */ while (i < testCount) { tr_free(test[i++]); } /* rebuild Torrent.pool with what's left */ tr_ptrArrayDestruct(&s->pool, nullptr); s->pool = {}; qsort(keep, keepCount, sizeof(struct peer_atom*), compareAtomPtrsByAddress); for (i = 0; i < keepCount; ++i) { tr_ptrArrayAppend(&s->pool, keep[i]); } tr_logAddTraceSwarm( s, fmt::format("max atom count is {}... pruned from {} to {}", maxAtomCount, atomCount, keepCount)); /* cleanup */ tr_free(test); tr_free(keep); } } tr_timerAddMsec(*mgr->atomTimer, AtomPeriodMsec); } /*** **** **** **** ***/ /* is this atom someone that we'd want to initiate a connection to? */ static bool isPeerCandidate(tr_torrent const* tor, struct peer_atom* atom, time_t const now) { /* not if we're both seeds */ if (tor->isDone() && atomIsSeed(atom)) { return false; } /* not if we've already got a connection to them... */ if (peerIsInUse(tor->swarm, atom)) { return false; } /* not if we just tried them already */ if (now - atom->time < getReconnectIntervalSecs(atom, now)) { return false; } /* not if they're blocklisted */ if (isAtomBlocklisted(tor->session, atom)) { return false; } /* not if they're banned... */ if ((atom->flags2 & MyflagBanned) != 0) { return false; } return true; } struct peer_candidate { uint64_t score; tr_torrent* tor; struct peer_atom* atom; }; static bool torrentWasRecentlyStarted(tr_torrent const* tor) { return difftime(tr_time(), tor->startDate) < 120; } static constexpr uint64_t addValToKey(uint64_t value, int width, uint64_t addme) { value = value << (uint64_t)width; value |= addme; return value; } /* smaller value is better */ static uint64_t getPeerCandidateScore(tr_torrent const* tor, struct peer_atom const* atom, uint8_t salt) { auto i = uint64_t{}; auto score = uint64_t{}; bool const failed = atom->lastConnectionAt < atom->lastConnectionAttemptAt; /* prefer peers we've connected to, or never tried, over peers we failed to connect to. */ i = failed ? 1 : 0; score = addValToKey(score, 1, i); /* prefer the one we attempted least recently (to cycle through all peers) */ i = atom->lastConnectionAttemptAt; score = addValToKey(score, 32, i); /* prefer peers belonging to a torrent of a higher priority */ switch (tr_torrentGetPriority(tor)) { case TR_PRI_HIGH: i = 0; break; case TR_PRI_NORMAL: i = 1; break; case TR_PRI_LOW: i = 2; break; } score = addValToKey(score, 4, i); /* prefer recently-started torrents */ i = torrentWasRecentlyStarted(tor) ? 0 : 1; score = addValToKey(score, 1, i); /* prefer torrents we're downloading with */ i = tor->isDone() ? 1 : 0; score = addValToKey(score, 1, i); /* prefer peers that are known to be connectible */ i = (atom->flags & ADDED_F_CONNECTABLE) != 0 ? 0 : 1; score = addValToKey(score, 1, i); /* prefer peers that we might be able to upload to */ i = (atom->flags & ADDED_F_SEED_FLAG) == 0 ? 0 : 1; score = addValToKey(score, 1, i); /* Prefer peers that we got from more trusted sources. * lower `fromBest' values indicate more trusted sources */ score = addValToKey(score, 4, atom->fromBest); /* salt */ score = addValToKey(score, 8, salt); return score; } static bool calculateAllSeeds(tr_swarm* swarm) { int nAtoms = 0; auto** atoms = (struct peer_atom**)tr_ptrArrayPeek(&swarm->pool, &nAtoms); for (int i = 0; i < nAtoms; ++i) { if (!atomIsSeed(atoms[i])) { return false; } } return true; } static bool swarmIsAllSeeds(tr_swarm* swarm) { if (swarm->poolIsAllSeedsDirty) { swarm->poolIsAllSeeds = calculateAllSeeds(swarm); swarm->poolIsAllSeedsDirty = false; } return swarm->poolIsAllSeeds; } /** @return an array of all the atoms we might want to connect to */ static std::vector getPeerCandidates(tr_session* session, size_t max) { time_t const now = tr_time(); uint64_t const now_msec = tr_time_msec(); /* leave 5% of connection slots for incoming connections -- ticket #2609 */ int const maxCandidates = tr_sessionGetPeerLimit(session) * 0.95; /* count how many peers and atoms we've got */ int atomCount = 0; int peerCount = 0; for (auto const* tor : session->torrents()) { atomCount += tr_ptrArraySize(&tor->swarm->pool); peerCount += tr_ptrArraySize(&tor->swarm->peers); } /* don't start any new handshakes if we're full up */ if (maxCandidates <= peerCount) { return {}; } auto candidates = std::vector{}; candidates.reserve(atomCount); /* populate the candidate array */ for (auto* tor : session->torrents()) { if (!tor->swarm->isRunning) { continue; } /* if everyone in the swarm is seeds and pex is disabled because * the torrent is private, then don't initiate connections */ bool const seeding = tor->isDone(); if (seeding && swarmIsAllSeeds(tor->swarm) && tor->isPrivate()) { continue; } /* if we've already got enough peers in this torrent... */ if (tr_torrentGetPeerLimit(tor) <= tr_ptrArraySize(&tor->swarm->peers)) { continue; } /* if we've already got enough speed in this torrent... */ if (seeding && isBandwidthMaxedOut(tor->bandwidth_, now_msec, TR_UP)) { continue; } auto nAtoms = int{}; auto** atoms = (peer_atom**)tr_ptrArrayPeek(&tor->swarm->pool, &nAtoms); for (int i = 0; i < nAtoms; ++i) { struct peer_atom* atom = atoms[i]; if (isPeerCandidate(tor, atom, now)) { uint8_t const salt = tr_rand_int_weak(1024); candidates.push_back({ getPeerCandidateScore(tor, atom, salt), tor, atom }); } } } // only keep the best `max` candidates if (std::size(candidates) > max) { std::partial_sort( std::begin(candidates), std::begin(candidates) + max, std::end(candidates), [](auto const& a, auto const& b) { return a.score < b.score; }); candidates.resize(max); } return candidates; } static void initiateConnection(tr_peerMgr* mgr, tr_swarm* s, struct peer_atom* atom) { time_t const now = tr_time(); bool utp = tr_sessionIsUTPEnabled(mgr->session) && !atom->utp_failed; if (atom->fromFirst == TR_PEER_FROM_PEX) { /* PEX has explicit signalling for uTP support. If an atom originally came from PEX and doesn't have the uTP flag, skip the uTP connection attempt. Are we being optimistic here? */ utp = utp && (atom->flags & ADDED_F_UTP_FLAGS) != 0; } tr_logAddTraceSwarm( s, fmt::format("Starting an OUTGOING {} connection with {}", utp ? " µTP" : "TCP", tr_atomAddrStr(atom))); tr_peerIo* const io = tr_peerIoNewOutgoing( mgr->session, &mgr->session->top_bandwidth_, &atom->addr, atom->port, tr_time(), s->tor->infoHash(), s->tor->completeness == TR_SEED, utp); if (io == nullptr) { tr_logAddTraceSwarm(s, fmt::format("peerIo not created; marking peer {} as unreachable", tr_atomAddrStr(atom))); atom->flags2 |= MyflagUnreachable; atom->numFails++; } else { tr_handshake* handshake = tr_handshakeNew(io, mgr->session->encryptionMode, on_handshake_done, mgr); TR_ASSERT(tr_peerIoGetTorrentHash(io)); tr_peerIoUnref(io); /* balanced by the initial ref in tr_peerIoNewOutgoing() */ s->outgoing_handshakes.try_emplace(atom->addr, handshake); } atom->lastConnectionAttemptAt = now; atom->time = now; } static void initiateCandidateConnection(tr_peerMgr* mgr, peer_candidate& c) { #if 0 fprintf(stderr, "Starting an OUTGOING connection with %s - [%s] %s, %s\n", tr_atomAddrStr(c->atom), tr_torrentName(c->tor), c->tor->isPrivate() ? "private" : "public", c->tor->isDone() ? "seed" : "downloader"); #endif initiateConnection(mgr, c.tor->swarm, c.atom); } static void makeNewPeerConnections(struct tr_peerMgr* mgr, size_t max) { for (auto& candidate : getPeerCandidates(mgr->session, max)) { initiateCandidateConnection(mgr, candidate); } }