// This file Copyright © 2017-2022 Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include #include #include #include #include #include #include #include "transmission.h" #include "clients.h" #include "crypto-utils.h" #include "handshake.h" #include "log.h" #include "peer-io.h" #include "timer.h" #include "tr-assert.h" #include "tr-buffer.h" #include "utils.h" using namespace std::literals; /* enable LibTransmission extension protocol */ #define ENABLE_LTEP /* fast extensions */ #define ENABLE_FAST /* DHT */ #define ENABLE_DHT /*** **** ***/ static auto constexpr HandshakeName = std::array{ std::byte{ 19 }, std::byte{ 'B' }, std::byte{ 'i' }, std::byte{ 't' }, std::byte{ 'T' }, std::byte{ 'o' }, std::byte{ 'r' }, std::byte{ 'r' }, std::byte{ 'e' }, std::byte{ 'n' }, std::byte{ 't' }, std::byte{ ' ' }, std::byte{ 'p' }, std::byte{ 'r' }, std::byte{ 'o' }, std::byte{ 't' }, std::byte{ 'o' }, std::byte{ 'c' }, std::byte{ 'o' }, std::byte{ 'l' } }; // bittorrent handshake constants static auto constexpr HandshakeFlagsLen = int{ 8 }; static auto constexpr HandshakeSize = int{ 68 }; static auto constexpr IncomingHandshakeLen = int{ 48 }; // encryption constants static auto constexpr PadaMaxlen = int{ 512 }; static auto constexpr PadbMaxlen = int{ 512 }; static auto constexpr PadcMaxlen = int{ 512 }; static auto constexpr CryptoProvidePlaintext = int{ 1 }; static auto constexpr CryptoProvideCrypto = int{ 2 }; // "VC is a verification constant that is used to verify whether the // other side knows S and SKEY and thus defeats replay attacks of the // SKEY hash. As of this version VC is a String of 8 bytes set to 0x00." // https://wiki.vuze.com/w/Message_Stream_Encryption using vc_t = std::array; static auto constexpr VC = vc_t{}; // how long to wait before giving up on a handshake static auto constexpr HandshakeTimeoutSec = 30s; #ifdef ENABLE_LTEP #define HANDSHAKE_HAS_LTEP(bits) (((bits)[5] & 0x10) != 0) #define HANDSHAKE_SET_LTEP(bits) ((bits)[5] |= 0x10) #else #define HANDSHAKE_HAS_LTEP(bits) (false) #define HANDSHAKE_SET_LTEP(bits) ((void)0) #endif #ifdef ENABLE_FAST #define HANDSHAKE_HAS_FASTEXT(bits) (((bits)[7] & 0x04) != 0) #define HANDSHAKE_SET_FASTEXT(bits) ((bits)[7] |= 0x04) #else #define HANDSHAKE_HAS_FASTEXT(bits) (false) #define HANDSHAKE_SET_FASTEXT(bits) ((void)0) #endif #ifdef ENABLE_DHT #define HANDSHAKE_HAS_DHT(bits) (((bits)[7] & 0x01) != 0) #define HANDSHAKE_SET_DHT(bits) ((bits)[7] |= 0x01) #else #define HANDSHAKE_HAS_DHT(bits) (false) #define HANDSHAKE_SET_DHT(bits) ((void)0) #endif /** *** **/ using DH = tr_message_stream_encryption::DH; enum handshake_state_t { /* incoming */ AWAITING_HANDSHAKE, AWAITING_PEER_ID, AWAITING_YA, AWAITING_PAD_A, AWAITING_CRYPTO_PROVIDE, AWAITING_PAD_C, AWAITING_IA, AWAITING_PAYLOAD_STREAM, /* outgoing */ AWAITING_YB, AWAITING_VC, AWAITING_CRYPTO_SELECT, AWAITING_PAD_D, /* */ N_STATES }; struct tr_handshake { tr_handshake( std::unique_ptr mediator_in, std::shared_ptr io_in, tr_encryption_mode encryption_mode_in) : mediator{ std::move(mediator_in) } , io{ std::move(io_in) } , dh{ mediator->privateKey() } , encryption_mode{ encryption_mode_in } { } tr_handshake(tr_handshake&&) = delete; tr_handshake(tr_handshake const&) = delete; tr_handshake& operator=(tr_handshake&&) = delete; tr_handshake& operator=(tr_handshake const&) = delete; ~tr_handshake() = default; [[nodiscard]] auto isIncoming() const noexcept { return io->isIncoming(); } [[nodiscard]] constexpr uint32_t cryptoProvide() const { uint32_t provide = 0; switch (encryption_mode) { case TR_ENCRYPTION_REQUIRED: case TR_ENCRYPTION_PREFERRED: provide |= CryptoProvideCrypto; break; case TR_CLEAR_PREFERRED: provide |= CryptoProvideCrypto | CryptoProvidePlaintext; break; } return provide; } std::unique_ptr const mediator; bool haveReadAnythingFromPeer = false; bool haveSentBitTorrentHandshake = false; std::shared_ptr const io; DH dh = {}; handshake_state_t state = AWAITING_HANDSHAKE; tr_encryption_mode encryption_mode; uint16_t pad_c_len = {}; uint16_t pad_d_len = {}; uint16_t ia_len = {}; uint32_t crypto_select = {}; uint32_t crypto_provide = {}; std::unique_ptr timeout_timer; std::optional peer_id; tr_handshake_done_func done_func = nullptr; void* done_func_user_data = nullptr; }; /** *** **/ #define tr_logAddTraceHand(handshake, msg) tr_logAddTrace(msg, (handshake)->io->addrStr()) static constexpr std::string_view getStateName(handshake_state_t const state) { auto state_strings = std::array{ "awaiting handshake"sv, /* AWAITING_HANDSHAKE */ "awaiting peer id"sv, /* AWAITING_PEER_ID */ "awaiting ya"sv, /* AWAITING_YA */ "awaiting pad a"sv, /* AWAITING_PAD_A */ "awaiting crypto_provide"sv, /* AWAITING_CRYPTO_PROVIDE */ "awaiting pad c"sv, /* AWAITING_PAD_C */ "awaiting ia"sv, /* AWAITING_IA */ "awaiting payload stream"sv, /* AWAITING_PAYLOAD_STREAM */ "awaiting yb"sv, /* AWAITING_YB */ "awaiting vc"sv, /* AWAITING_VC */ "awaiting crypto select"sv, /* AWAITING_CRYPTO_SELECT */ "awaiting pad d"sv /* AWAITING_PAD_D */ }; return state < N_STATES ? state_strings[state] : "unknown state"sv; } static void setState(tr_handshake* handshake, handshake_state_t state) { tr_logAddTraceHand(handshake, fmt::format("setting to state [{}]", getStateName(state))); handshake->state = state; } static void setReadState(tr_handshake* handshake, handshake_state_t state) { setState(handshake, state); } static bool buildHandshakeMessage(tr_handshake const* const handshake, uint8_t* buf) { auto const& info_hash = handshake->io->torrentHash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "buildHandshakeMessage requires an info_hash"); auto const info = handshake->mediator->torrentInfo(info_hash); if (!info) { return false; } uint8_t* walk = buf; walk = std::copy_n(reinterpret_cast(std::data(HandshakeName)), std::size(HandshakeName), walk); std::fill_n(walk, HandshakeFlagsLen, 0); HANDSHAKE_SET_LTEP(walk); HANDSHAKE_SET_FASTEXT(walk); /* Note that this doesn't depend on whether the torrent is private. * We don't accept DHT peers for a private torrent, * but we participate in the DHT regardless. */ if (handshake->mediator->allowsDHT()) { HANDSHAKE_SET_DHT(walk); } walk += HandshakeFlagsLen; walk = std::copy_n(reinterpret_cast(std::data(info_hash)), std::size(info_hash), walk); [[maybe_unused]] auto const* const walk_end = std::copy( std::begin(info->client_peer_id), std::end(info->client_peer_id), walk); TR_ASSERT(walk_end - buf == HandshakeSize); return true; } static ReadState tr_handshakeDone(tr_handshake* handshake, bool is_connected); enum class ParseResult { Ok, EncryptionWrong, BadTorrent, PeerIsSelf, }; static ParseResult parseHandshake(tr_handshake* handshake, tr_peerIo* peer_io) { tr_logAddTraceHand(handshake, fmt::format("payload: need {}, got {}", HandshakeSize, peer_io->readBufferSize())); if (peer_io->readBufferSize() < HandshakeSize) { return ParseResult::EncryptionWrong; } /* confirm the protocol */ auto name = decltype(HandshakeName){}; peer_io->readBytes(std::data(name), std::size(name)); if (name != HandshakeName) { return ParseResult::EncryptionWrong; } /* read the reserved bytes */ auto reserved = std::array{}; peer_io->readBytes(std::data(reserved), std::size(reserved)); // torrent hash auto info_hash = tr_sha1_digest_t{}; peer_io->readBytes(std::data(info_hash), std::size(info_hash)); if (info_hash == tr_sha1_digest_t{} || info_hash != peer_io->torrentHash()) { tr_logAddTraceHand(handshake, "peer returned the wrong hash. wtf?"); return ParseResult::BadTorrent; } // peer_id auto peer_id = tr_peer_id_t{}; peer_io->readBytes(std::data(peer_id), std::size(peer_id)); handshake->peer_id = peer_id; /* peer id */ auto const peer_id_sv = std::string_view{ std::data(peer_id), std::size(peer_id) }; tr_logAddTraceHand(handshake, fmt::format("peer-id is '{}'", peer_id_sv)); if (auto const info = handshake->mediator->torrentInfo(info_hash); info && info->client_peer_id == peer_id) { tr_logAddTraceHand(handshake, "streuth! we've connected to ourselves."); return ParseResult::PeerIsSelf; } /** *** Extensions **/ peer_io->enableDHT(HANDSHAKE_HAS_DHT(reserved)); peer_io->enableLTEP(HANDSHAKE_HAS_LTEP(reserved)); peer_io->enableFEXT(HANDSHAKE_HAS_FASTEXT(reserved)); return ParseResult::Ok; } /*** **** **** OUTGOING CONNECTIONS **** ***/ template static void sendPublicKeyAndPad(tr_handshake* handshake) { auto const public_key = handshake->dh.publicKey(); auto outbuf = std::array{}; auto const data = std::data(outbuf); auto walk = data; walk = std::copy(std::begin(public_key), std::end(public_key), walk); walk += handshake->mediator->pad(walk, PadMax); handshake->io->writeBytes(data, walk - data, false); } // 1 A->B: our public key (Ya) and some padding (PadA) static void sendYa(tr_handshake* handshake) { sendPublicKeyAndPad(handshake); setReadState(handshake, AWAITING_YB); } static constexpr uint32_t getCryptoSelect(tr_encryption_mode encryption_mode, uint32_t crypto_provide) { auto choices = std::array{}; int n_choices = 0; switch (encryption_mode) { case TR_ENCRYPTION_REQUIRED: choices[n_choices++] = CryptoProvideCrypto; break; case TR_ENCRYPTION_PREFERRED: choices[n_choices++] = CryptoProvideCrypto; choices[n_choices++] = CryptoProvidePlaintext; break; case TR_CLEAR_PREFERRED: choices[n_choices++] = CryptoProvidePlaintext; choices[n_choices++] = CryptoProvideCrypto; break; } for (auto const& choice : choices) { if ((crypto_provide & choice) != 0) { return choice; } } return 0; } static ReadState readYb(tr_handshake* handshake, tr_peerIo* peer_io) { if (peer_io->readBufferSize() < std::size(HandshakeName)) { return READ_LATER; } bool const is_encrypted = !peer_io->readBufferStartsWith(HandshakeName); auto peer_public_key = DH::key_bigend_t{}; if (is_encrypted && (peer_io->readBufferSize() < std::size(peer_public_key))) { return READ_LATER; } tr_logAddTraceHand(handshake, is_encrypted ? "got an encrypted handshake" : "got a plain handshake"); if (!is_encrypted) { setState(handshake, AWAITING_HANDSHAKE); return READ_NOW; } handshake->haveReadAnythingFromPeer = true; // get the peer's public key peer_io->readBytes(std::data(peer_public_key), std::size(peer_public_key)); handshake->dh.setPeerPublicKey(peer_public_key); /* now send these: HASH('req1', S), HASH('req2', SKEY) xor HASH('req3', S), * ENCRYPT(VC, crypto_provide, len(PadC), PadC, len(IA)), ENCRYPT(IA) */ auto outbuf = libtransmission::Buffer{}; /* HASH('req1', S) */ outbuf.add(tr_sha1::digest("req1"sv, handshake->dh.secret())); auto const& info_hash = peer_io->torrentHash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readYb requires an info_hash"); /* HASH('req2', SKEY) xor HASH('req3', S) */ { auto const req2 = tr_sha1::digest("req2"sv, info_hash); auto const req3 = tr_sha1::digest("req3"sv, handshake->dh.secret()); auto x_or = tr_sha1_digest_t{}; for (size_t i = 0, n = std::size(x_or); i < n; ++i) { x_or[i] = req2[i] ^ req3[i]; } outbuf.add(x_or); } /* ENCRYPT(VC, crypto_provide, len(PadC), PadC * PadC is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ peer_io->write(outbuf, false); peer_io->encryptInit(peer_io->isIncoming(), handshake->dh, info_hash); outbuf.add(VC); outbuf.addUint32(handshake->cryptoProvide()); outbuf.addUint16(0); /* ENCRYPT len(IA)), ENCRYPT(IA) */ if (auto msg = std::array{}; buildHandshakeMessage(handshake, std::data(msg))) { outbuf.addUint16(std::size(msg)); outbuf.add(msg); handshake->haveSentBitTorrentHandshake = true; } else { return tr_handshakeDone(handshake, false); } /* send it */ setReadState(handshake, AWAITING_VC); peer_io->write(outbuf, false); return READ_NOW; } // MSE spec: "Since the length of [PadB is] unknown, // A will be able to resynchronize on ENCRYPT(VC)" static ReadState readVC(tr_handshake* handshake, tr_peerIo* peer_io) { auto const info_hash = peer_io->torrentHash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readVC requires an info_hash"); // find the end of PadB by looking for `ENCRYPT(VC)` auto needle = VC; auto filter = tr_message_stream_encryption::Filter{}; filter.encryptInit(true, handshake->dh, info_hash); filter.encrypt(std::size(needle), std::data(needle)); for (size_t i = 0; i < PadbMaxlen; ++i) { if (peer_io->readBufferSize() < std::size(needle)) { tr_logAddTraceHand(handshake, "not enough bytes... returning read_more"); return READ_LATER; } if (peer_io->readBufferStartsWith(needle)) { tr_logAddTraceHand(handshake, "got it!"); // We already know it's a match; now we just need to // consume it from the read buffer. peer_io->decryptInit(peer_io->isIncoming(), handshake->dh, info_hash); peer_io->readBytes(std::data(needle), std::size(needle)); setState(handshake, AWAITING_CRYPTO_SELECT); return READ_NOW; } peer_io->readBufferDrain(1); } tr_logAddTraceHand(handshake, "couldn't find ENCRYPT(VC)"); return tr_handshakeDone(handshake, false); } static ReadState readCryptoSelect(tr_handshake* handshake, tr_peerIo* peer_io) { if (static size_t constexpr NeedLen = sizeof(uint32_t) + sizeof(uint16_t); peer_io->readBufferSize() < NeedLen) { return READ_LATER; } uint32_t crypto_select = 0; peer_io->readUint32(&crypto_select); handshake->crypto_select = crypto_select; tr_logAddTraceHand(handshake, fmt::format("crypto select is {}", crypto_select)); if ((crypto_select & handshake->cryptoProvide()) == 0) { tr_logAddTraceHand(handshake, "peer selected an encryption option we didn't offer"); return tr_handshakeDone(handshake, false); } uint16_t pad_d_len = 0; peer_io->readUint16(&pad_d_len); tr_logAddTraceHand(handshake, fmt::format("pad_d_len is {}", pad_d_len)); if (pad_d_len > 512) { tr_logAddTraceHand(handshake, "encryption handshake: pad_d_len is too long"); return tr_handshakeDone(handshake, false); } handshake->pad_d_len = pad_d_len; setState(handshake, AWAITING_PAD_D); return READ_NOW; } static ReadState readPadD(tr_handshake* handshake, tr_peerIo* peer_io) { size_t const needlen = handshake->pad_d_len; tr_logAddTraceHand(handshake, fmt::format("pad d: need {}, got {}", needlen, peer_io->readBufferSize())); if (peer_io->readBufferSize() < needlen) { return READ_LATER; } peer_io->readBufferDrain(needlen); setState(handshake, AWAITING_HANDSHAKE); return READ_NOW; } /*** **** **** INCOMING CONNECTIONS **** ***/ static ReadState readHandshake(tr_handshake* handshake, tr_peerIo* peer_io) { tr_logAddTraceHand(handshake, fmt::format("payload: need {}, got {}", IncomingHandshakeLen, peer_io->readBufferSize())); if (peer_io->readBufferSize() < IncomingHandshakeLen) { return READ_LATER; } handshake->haveReadAnythingFromPeer = true; if (peer_io->readBufferStartsWith(HandshakeName)) // unencrypted { if (handshake->encryption_mode == TR_ENCRYPTION_REQUIRED) { tr_logAddTraceHand(handshake, "peer is unencrypted, and we're disallowing that"); return tr_handshakeDone(handshake, false); } } else // either encrypted or corrupt { if (handshake->isIncoming()) { tr_logAddTraceHand(handshake, "I think peer is sending us an encrypted handshake..."); setState(handshake, AWAITING_YA); return READ_NOW; } } auto name = decltype(HandshakeName){}; peer_io->readBytes(std::data(name), std::size(name)); if (name != HandshakeName) { return tr_handshakeDone(handshake, false); } /* reserved bytes */ auto reserved = std::array{}; peer_io->readBytes(std::data(reserved), std::size(reserved)); /** *** Extensions **/ peer_io->enableDHT(HANDSHAKE_HAS_DHT(reserved)); peer_io->enableLTEP(HANDSHAKE_HAS_LTEP(reserved)); peer_io->enableFEXT(HANDSHAKE_HAS_FASTEXT(reserved)); /* torrent hash */ auto hash = tr_sha1_digest_t{}; peer_io->readBytes(std::data(hash), std::size(hash)); if (handshake->isIncoming()) { if (!handshake->mediator->torrentInfo(hash)) { tr_logAddTraceHand(handshake, "peer is trying to connect to us for a torrent we don't have."); return tr_handshakeDone(handshake, false); } peer_io->setTorrentHash(hash); } else // outgoing { if (peer_io->torrentHash() != hash) { tr_logAddTraceHand(handshake, "peer returned the wrong hash. wtf?"); return tr_handshakeDone(handshake, false); } } /** *** If it's an incoming message, we need to send a response handshake **/ if (!handshake->haveSentBitTorrentHandshake) { auto msg = std::array{}; if (!buildHandshakeMessage(handshake, std::data(msg))) { return tr_handshakeDone(handshake, false); } peer_io->writeBytes(std::data(msg), std::size(msg), false); handshake->haveSentBitTorrentHandshake = true; } setReadState(handshake, AWAITING_PEER_ID); return READ_NOW; } static ReadState readPeerId(tr_handshake* handshake, tr_peerIo* peer_io) { // read the peer_id auto peer_id = tr_peer_id_t{}; if (peer_io->readBufferSize() < std::size(peer_id)) { return READ_LATER; } peer_io->readBytes(std::data(peer_id), std::size(peer_id)); handshake->peer_id = peer_id; auto client = std::array{}; tr_clientForId(std::data(client), std::size(client), peer_id); tr_logAddTraceHand( handshake, fmt::format("peer-id is '{}' ... isIncoming is {}", std::data(client), handshake->isIncoming())); // if we've somehow connected to ourselves, don't keep the connection auto const info_hash = peer_io->torrentHash(); auto const info = handshake->mediator->torrentInfo(info_hash); auto const connected_to_self = info && info->client_peer_id == peer_id; return tr_handshakeDone(handshake, !connected_to_self); } static ReadState readYa(tr_handshake* handshake, tr_peerIo* peer_io) { auto peer_public_key = DH::key_bigend_t{}; tr_logAddTraceHand( handshake, fmt::format("in readYa... need {}, have {}", std::size(peer_public_key), peer_io->readBufferSize())); if (peer_io->readBufferSize() < std::size(peer_public_key)) { return READ_LATER; } /* read the incoming peer's public key */ peer_io->readBytes(std::data(peer_public_key), std::size(peer_public_key)); handshake->dh.setPeerPublicKey(peer_public_key); // send our public key to the peer tr_logAddTraceHand(handshake, "sending B->A: Diffie Hellman Yb, PadB"); sendPublicKeyAndPad(handshake); setReadState(handshake, AWAITING_PAD_A); return READ_NOW; } static ReadState readPadA(tr_handshake* handshake, tr_peerIo* peer_io) { // find the end of PadA by looking for HASH('req1', S) auto const needle = tr_sha1::digest("req1"sv, handshake->dh.secret()); for (size_t i = 0; i < PadaMaxlen; ++i) { if (peer_io->readBufferSize() < std::size(needle)) { tr_logAddTraceHand(handshake, "not enough bytes... returning read_more"); return READ_LATER; } if (peer_io->readBufferStartsWith(needle)) { tr_logAddTraceHand(handshake, "found it... looking setting to awaiting_crypto_provide"); peer_io->readBufferDrain(std::size(needle)); setState(handshake, AWAITING_CRYPTO_PROVIDE); return READ_NOW; } peer_io->readBufferDrain(1U); } tr_logAddTraceHand(handshake, "couldn't find HASH('req', S)"); return tr_handshakeDone(handshake, false); } static ReadState readCryptoProvide(tr_handshake* handshake, tr_peerIo* peer_io) { /* HASH('req2', SKEY) xor HASH('req3', S), ENCRYPT(VC, crypto_provide, len(PadC)) */ uint16_t padc_len = 0; uint32_t crypto_provide = 0; auto obfuscated_hash = tr_sha1_digest_t{}; size_t const needlen = sizeof(obfuscated_hash) + /* HASH('req2', SKEY) xor HASH('req3', S) */ std::size(VC) + sizeof(crypto_provide) + sizeof(padc_len); if (peer_io->readBufferSize() < needlen) { return READ_LATER; } /* This next piece is HASH('req2', SKEY) xor HASH('req3', S) ... * we can get the first half of that (the obfuscatedTorrentHash) * by building the latter and xor'ing it with what the peer sent us */ tr_logAddTraceHand(handshake, "reading obfuscated torrent hash..."); auto req2 = tr_sha1_digest_t{}; peer_io->readBytes(std::data(req2), std::size(req2)); auto const req3 = tr_sha1::digest("req3"sv, handshake->dh.secret()); for (size_t i = 0; i < std::size(obfuscated_hash); ++i) { obfuscated_hash[i] = req2[i] ^ req3[i]; } if (auto const info = handshake->mediator->torrentInfoFromObfuscated(obfuscated_hash); info) { bool const client_is_seed = info->is_done; bool const peer_is_seed = handshake->mediator->isPeerKnownSeed(info->id, peer_io->address()); tr_logAddTraceHand(handshake, fmt::format("got INCOMING connection's encrypted handshake for torrent [{}]", info->id)); peer_io->setTorrentHash(info->info_hash); if (client_is_seed && peer_is_seed) { tr_logAddTraceHand(handshake, "another seed tried to reconnect to us!"); return tr_handshakeDone(handshake, false); } } else { tr_logAddTraceHand(handshake, "can't find that torrent..."); return tr_handshakeDone(handshake, false); } /* next part: ENCRYPT(VC, crypto_provide, len(PadC), */ auto const& info_hash = peer_io->torrentHash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readCryptoProvide requires an info_hash"); peer_io->decryptInit(peer_io->isIncoming(), handshake->dh, info_hash); auto vc_in = vc_t{}; peer_io->readBytes(std::data(vc_in), std::size(vc_in)); peer_io->readUint32(&crypto_provide); handshake->crypto_provide = crypto_provide; tr_logAddTraceHand(handshake, fmt::format("crypto_provide is {}", crypto_provide)); peer_io->readUint16(&padc_len); tr_logAddTraceHand(handshake, fmt::format("padc is {}", padc_len)); if (padc_len > PadcMaxlen) { tr_logAddTraceHand(handshake, "peer's PadC is too big"); return tr_handshakeDone(handshake, false); } handshake->pad_c_len = padc_len; setState(handshake, AWAITING_PAD_C); return READ_NOW; } static ReadState readPadC(tr_handshake* handshake, tr_peerIo* peer_io) { if (auto const needlen = handshake->pad_c_len + sizeof(uint16_t); peer_io->readBufferSize() < needlen) { return READ_LATER; } // read the throwaway padc auto pad_c = std::array{}; peer_io->readBytes(std::data(pad_c), handshake->pad_c_len); /* read ia_len */ uint16_t ia_len = 0; peer_io->readUint16(&ia_len); tr_logAddTraceHand(handshake, fmt::format("ia_len is {}", ia_len)); handshake->ia_len = ia_len; setState(handshake, AWAITING_IA); return READ_NOW; } static ReadState readIA(tr_handshake* handshake, tr_peerIo* peer_io) { size_t const needlen = handshake->ia_len; tr_logAddTraceHand(handshake, fmt::format("reading IA... have {}, need {}", peer_io->readBufferSize(), needlen)); if (peer_io->readBufferSize() < needlen) { return READ_LATER; } /** *** B->A: ENCRYPT(VC, crypto_select, len(padD), padD), ENCRYPT2(Payload Stream) **/ auto const& info_hash = peer_io->torrentHash(); TR_ASSERT_MSG(info_hash != tr_sha1_digest_t{}, "readIA requires an info_hash"); peer_io->encryptInit(peer_io->isIncoming(), handshake->dh, info_hash); auto outbuf = libtransmission::Buffer{}; // send VC tr_logAddTraceHand(handshake, "sending vc"); outbuf.add(VC); /* send crypto_select */ uint32_t const crypto_select = getCryptoSelect(handshake->encryption_mode, handshake->crypto_provide); if (crypto_select != 0) { tr_logAddTraceHand(handshake, fmt::format("selecting crypto mode '{}'", crypto_select)); outbuf.addUint32(crypto_select); } else { tr_logAddTraceHand(handshake, "peer didn't offer an encryption mode we like."); return tr_handshakeDone(handshake, false); } tr_logAddTraceHand(handshake, "sending pad d"); /* ENCRYPT(VC, crypto_provide, len(PadD), PadD * PadD is reserved for future extensions to the handshake... * standard practice at this time is for it to be zero-length */ outbuf.addUint16(0); /* maybe de-encrypt our connection */ if (crypto_select == CryptoProvidePlaintext) { peer_io->write(outbuf, false); TR_ASSERT(std::empty(outbuf)); } tr_logAddTraceHand(handshake, "sending handshake"); /* send our handshake */ if (auto msg = std::array{}; buildHandshakeMessage(handshake, std::data(msg))) { outbuf.add(msg); handshake->haveSentBitTorrentHandshake = true; } else { return tr_handshakeDone(handshake, false); } /* send it out */ peer_io->write(outbuf, false); /* now await the handshake */ setState(handshake, AWAITING_PAYLOAD_STREAM); return READ_NOW; } static ReadState readPayloadStream(tr_handshake* handshake, tr_peerIo* peer_io) { size_t const needlen = HandshakeSize; tr_logAddTraceHand( handshake, fmt::format("reading payload stream... have {}, need {}", peer_io->readBufferSize(), needlen)); if (peer_io->readBufferSize() < needlen) { return READ_LATER; } /* parse the handshake ... */ auto const i = parseHandshake(handshake, peer_io); tr_logAddTraceHand(handshake, fmt::format("parseHandshake returned {}", static_cast(i))); if (i != ParseResult::Ok) { return tr_handshakeDone(handshake, false); } /* we've completed the BT handshake... pass the work on to peer-msgs */ return tr_handshakeDone(handshake, true); } /*** **** **** **** ***/ static ReadState canRead(tr_peerIo* peer_io, void* vhandshake, size_t* piece) { TR_ASSERT(tr_isPeerIo(peer_io)); auto* handshake = static_cast(vhandshake); bool ready_for_more = true; /* no piece data in handshake */ *piece = 0; tr_logAddTraceHand(handshake, fmt::format("handling canRead; state is [{}]", getStateName(handshake->state))); ReadState ret = READ_NOW; while (ready_for_more) { switch (handshake->state) { case AWAITING_HANDSHAKE: ret = readHandshake(handshake, peer_io); break; case AWAITING_PEER_ID: ret = readPeerId(handshake, peer_io); break; case AWAITING_YA: ret = readYa(handshake, peer_io); break; case AWAITING_PAD_A: ret = readPadA(handshake, peer_io); break; case AWAITING_CRYPTO_PROVIDE: ret = readCryptoProvide(handshake, peer_io); break; case AWAITING_PAD_C: ret = readPadC(handshake, peer_io); break; case AWAITING_IA: ret = readIA(handshake, peer_io); break; case AWAITING_PAYLOAD_STREAM: ret = readPayloadStream(handshake, peer_io); break; case AWAITING_YB: ret = readYb(handshake, peer_io); break; case AWAITING_VC: ret = readVC(handshake, peer_io); break; case AWAITING_CRYPTO_SELECT: ret = readCryptoSelect(handshake, peer_io); break; case AWAITING_PAD_D: ret = readPadD(handshake, peer_io); break; default: #ifdef TR_ENABLE_ASSERTS TR_ASSERT_MSG(false, fmt::format(FMT_STRING("unhandled handshake state {:d}"), static_cast(handshake->state))); #else ret = READ_ERR; break; #endif } if (ret != READ_NOW) { ready_for_more = false; } else if (handshake->state == AWAITING_PAD_C) { ready_for_more = peer_io->readBufferSize() >= handshake->pad_c_len; } else if (handshake->state == AWAITING_PAD_D) { ready_for_more = peer_io->readBufferSize() >= handshake->pad_d_len; } else if (handshake->state == AWAITING_IA) { ready_for_more = peer_io->readBufferSize() >= handshake->ia_len; } } return ret; } static bool fireDoneFunc(tr_handshake* handshake, bool is_connected) { auto result = tr_handshake_result{}; result.handshake = handshake; result.io = handshake->io; result.readAnythingFromPeer = handshake->haveReadAnythingFromPeer; result.isConnected = is_connected; result.userData = handshake->done_func_user_data; result.peer_id = handshake->peer_id; bool const success = (*handshake->done_func)(result); return success; } static ReadState tr_handshakeDone(tr_handshake* handshake, bool is_connected) { tr_logAddTraceHand(handshake, is_connected ? "handshakeDone: connected" : "handshakeDone: aborting"); handshake->io->clearCallbacks(); bool const success = fireDoneFunc(handshake, is_connected); delete handshake; return success ? READ_LATER : READ_ERR; } void tr_handshakeAbort(tr_handshake* handshake) { if (handshake != nullptr) { tr_handshakeDone(handshake, false); } } static void gotError(tr_peerIo* io, short what, void* vhandshake) { int const errcode = errno; auto* handshake = static_cast(vhandshake); if (io->socket.type == TR_PEER_SOCKET_TYPE_UTP && !io->isIncoming() && handshake->state == AWAITING_YB) { // the peer probably doesn't speak µTP. auto const info_hash = io->torrentHash(); auto const info = handshake->mediator->torrentInfo(info_hash); /* Don't mark a peer as non-µTP unless it's really a connect failure. */ if ((errcode == ETIMEDOUT || errcode == ECONNREFUSED) && info) { handshake->mediator->setUTPFailed(info_hash, io->address()); } if (handshake->mediator->allowsTCP() && handshake->io->reconnect() == 0) { auto msg = std::array{}; buildHandshakeMessage(handshake, std::data(msg)); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); handshake->io->writeBytes(std::data(msg), std::size(msg), false); } } /* if the error happened while we were sending a public key, we might * have encountered a peer that doesn't do encryption... reconnect and * try a plaintext handshake */ if ((handshake->state == AWAITING_YB || handshake->state == AWAITING_VC) && handshake->encryption_mode != TR_ENCRYPTION_REQUIRED && handshake->mediator->allowsTCP() && handshake->io->reconnect() == 0) { auto msg = std::array{}; tr_logAddTraceHand(handshake, "handshake failed, trying plaintext..."); buildHandshakeMessage(handshake, std::data(msg)); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); handshake->io->writeBytes(std::data(msg), std::size(msg), false); } else { tr_logAddTraceHand( handshake, fmt::format("libevent got an error: what={:d}, errno={:d} ({:s})", what, errcode, tr_strerror(errcode))); tr_handshakeDone(handshake, false); } } /** *** **/ tr_handshake* tr_handshakeNew( std::unique_ptr mediator, std::shared_ptr io, tr_encryption_mode encryption_mode, tr_handshake_done_func done_func, void* done_func_user_data) { auto* const handshake = new tr_handshake{ std::move(mediator), std::move(io), encryption_mode }; handshake->done_func = done_func; handshake->done_func_user_data = done_func_user_data; handshake->timeout_timer = handshake->mediator->timerMaker().create([handshake]() { tr_handshakeAbort(handshake); }); handshake->timeout_timer->startSingleShot(HandshakeTimeoutSec); handshake->io->setCallbacks(canRead, nullptr, gotError, handshake); if (handshake->isIncoming()) { setReadState(handshake, AWAITING_HANDSHAKE); } else if (encryption_mode != TR_CLEAR_PREFERRED) { sendYa(handshake); } else { auto msg = std::array{}; buildHandshakeMessage(handshake, std::data(msg)); handshake->haveSentBitTorrentHandshake = true; setReadState(handshake, AWAITING_HANDSHAKE); handshake->io->writeBytes(std::data(msg), std::size(msg), false); } return handshake; }