transmission/libtransmission/sha1.c

261 lines
7.1 KiB
C

/*
sha1.c: Implementation of SHA-1 Secure Hash Algorithm-1
Based upon: NIST FIPS180-1 Secure Hash Algorithm-1
http://www.itl.nist.gov/fipspubs/fip180-1.htm
Non-official Japanese Translation by HIRATA Yasuyuki:
http://yasu.asuka.net/translations/SHA-1.html
Copyright (C) 2002 vi@nwr.jp. All rights reserved.
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as beging the original software.
3. This notice may not be removed or altered from any source distribution.
Note:
The copyright notice above is copied from md5.h by L. Peter Deutsch
<ghost@aladdin.com>. Thank him since I'm not a good speaker of English. :)
*/
#include <string.h>
#include "sha1.h"
#if !defined(HAVE_OPENSSL) && !defined(HAVE_LIBSSL)
#define BITS 8
#define INLINE inline
struct sha1_state_s
{
sha1_byte_t sha1_buf[64]; /* 512 bits */
int sha1_count; /* How many bytes are used */
sha1_word_t sha1_size1; /* Length counter Lower Word */
sha1_word_t sha1_size2; /* Length counter Upper Word */
sha1_word_t sha1_h[5]; /* Hash output */
};
/*
* Packing bytes to a word
*
* Should not assume p is aligned to word boundary
*/
static INLINE sha1_word_t packup(sha1_byte_t *p)
{
/* Portable, but slow */
return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3] << 0;
}
/*
* Unpacking a word to bytes
*
* Should not assume p is aligned to word boundary
*/
static void unpackup(sha1_byte_t *p, sha1_word_t q)
{
p[0] = (q >> 24) & 0xff;
p[1] = (q >> 16) & 0xff;
p[2] = (q >> 8) & 0xff;
p[3] = (q >> 0) & 0xff;
}
/*
* Processing a block
*/
static inline void sha1_update_now(sha1_state_t *pms, sha1_byte_t *bp)
{
sha1_word_t tmp, a, b, c, d, e, w[16+16];
int i, s;
/* pack 64 bytes into 16 words */
for(i = 0; i < 16; i++) {
w[i] = packup(bp + i * sizeof(sha1_word_t));
}
memcpy(w + 16, w + 0, sizeof(sha1_word_t) * 16);
a = pms->sha1_h[0], b = pms->sha1_h[1], c = pms->sha1_h[2], d = pms->sha1_h[3], e = pms->sha1_h[4];
#define rot(x,n) (((x) << n) | ((x) >> (32-n)))
#define f0(b, c, d) ((b&c)|(~b&d))
#define f1(b, c, d) (b^c^d)
#define f2(b, c, d) ((b&c)|(b&d)|(c&d))
#define f3(b, c, d) (b^c^d)
#define k0 0x5a827999
#define k1 0x6ed9eba1
#define k2 0x8f1bbcdc
#define k3 0xca62c1d6
/* t=0-15 */
s = 0;
for(i = 0; i < 16; i++) {
tmp = rot(a, 5) + f0(b, c, d) + e + w[s] + k0;
e = d; d = c; c = rot(b, 30); b = a; a = tmp;
s = (s + 1) % 16;
}
/* t=16-19 */
for(i = 16; i < 20; i++) {
w[s] = rot(w[s+13] ^ w[s+8] ^ w[s+2] ^ w[s], 1);
w[s+16] = w[s];
tmp = rot(a, 5) + f0(b, c, d) + e + w[s] + k0;
e = d; d = c; c = rot(b, 30); b = a; a = tmp;
s = (s + 1) % 16;
}
/* t=20-39 */
for(i = 0; i < 20; i++) {
w[s] = rot(w[s+13] ^ w[s+8] ^ w[s+2] ^ w[s], 1);
w[s+16] = w[s];
tmp = rot(a, 5) + f1(b, c, d) + e + w[s] + k1;
e = d; d = c; c = rot(b, 30); b = a; a = tmp;
s = (s + 1) % 16;
}
/* t=40-59 */
for(i = 0; i < 20; i++) {
w[s] = rot(w[s+13] ^ w[s+8] ^ w[s+2] ^ w[s], 1);
w[s+16] = w[s];
tmp = rot(a, 5) + f2(b, c, d) + e + w[s] + k2;
e = d; d = c; c = rot(b, 30); b = a; a = tmp;
s = (s + 1) % 16;
}
/* t=60-79 */
for(i = 0; i < 20; i++) {
w[s] = rot(w[s+13] ^ w[s+8] ^ w[s+2] ^ w[s], 1);
w[s+16] = w[s];
tmp = rot(a, 5) + f3(b, c, d) + e + w[s] + k3;
e = d; d = c; c = rot(b, 30); b = a; a = tmp;
s = (s + 1) % 16;
}
pms->sha1_h[0] += a, pms->sha1_h[1] += b, pms->sha1_h[2] += c, pms->sha1_h[3] += d, pms->sha1_h[4] += e;
}
/*
* Increment sha1_size1, sha1_size2 field of sha1_state_t
*/
static INLINE void incr(sha1_state_t *pms, int v)
{
sha1_word_t q;
q = pms->sha1_size1 + v * BITS;
if(q < pms->sha1_size1) {
pms->sha1_size2++;
}
pms->sha1_size1 = q;
}
/*
* Initialize sha1_state_t as FIPS specifies
*/
void sha1_init(sha1_state_t *pms)
{
memset(pms, 0, sizeof(*pms));
pms->sha1_h[0] = 0x67452301; /* Initialize H[0]-H[4] */
pms->sha1_h[1] = 0xEFCDAB89;
pms->sha1_h[2] = 0x98BADCFE;
pms->sha1_h[3] = 0x10325476;
pms->sha1_h[4] = 0xC3D2E1F0;
}
/*
* Fill block and update output when needed
*/
void sha1_update(sha1_state_t *pms, sha1_byte_t *bufp, int length)
{
/* Is the buffer partially filled? */
if(pms->sha1_count != 0) {
if(pms->sha1_count + length >= (signed) sizeof(pms->sha1_buf)) { /* buffer is filled enough */
int fil = sizeof(pms->sha1_buf) - pms->sha1_count; /* length to copy */
memcpy(pms->sha1_buf + pms->sha1_count, bufp, fil);
sha1_update_now(pms, pms->sha1_buf);
length -= fil;
bufp += fil;
pms->sha1_count = 0;
incr(pms, fil);
} else {
memcpy(pms->sha1_buf + pms->sha1_count, bufp, length);
pms->sha1_count += length;
incr(pms, length);
return;
}
}
/* Loop to update state */
for(;;) {
if(length < (signed) sizeof(pms->sha1_buf)) { /* Short to fill up the buffer */
if(length) {
memcpy(pms->sha1_buf, bufp, length);
}
pms->sha1_count = length;
incr(pms, length);
break;
}
sha1_update_now(pms, bufp);
length -= sizeof(pms->sha1_buf);
bufp += sizeof(pms->sha1_buf);
incr(pms, sizeof(pms->sha1_buf));
}
}
void sha1_finish(sha1_state_t *pms, sha1_byte_t output[SHA1_OUTPUT_SIZE])
{
int i;
sha1_byte_t buf[1];
/* fill a bit */
buf[0] = 0x80;
sha1_update(pms, buf, 1);
/* Decrement sha1_size1, sha1_size2 */
if((pms->sha1_size1 -= BITS) == 0) {
pms->sha1_size2--;
}
/* fill zeros */
if(pms->sha1_count > (signed) (sizeof(pms->sha1_buf) - 2 * sizeof(sha1_word_t))) {
memset(pms->sha1_buf + pms->sha1_count, 0, sizeof(pms->sha1_buf) - pms->sha1_count);
sha1_update_now(pms, pms->sha1_buf);
pms->sha1_count = 0;
}
memset(pms->sha1_buf + pms->sha1_count, 0,
sizeof(pms->sha1_buf) - pms->sha1_count - sizeof(sha1_word_t) * 2);
/* fill last length */
unpackup(pms->sha1_buf + sizeof(pms->sha1_buf) - sizeof(sha1_word_t) * 2, pms->sha1_size2);
unpackup(pms->sha1_buf + sizeof(pms->sha1_buf) - sizeof(sha1_word_t) * 1, pms->sha1_size1);
/* final update */
sha1_update_now(pms, pms->sha1_buf);
/* move hash value to output byte array */
for(i = 0; i < (signed) (sizeof(pms->sha1_h)/sizeof(sha1_word_t)); i++) {
unpackup(output + i * sizeof(sha1_word_t), pms->sha1_h[i]);
}
}
void
tr_sha1( const void * input_buffer, int length, unsigned char * output)
{
sha1_state_t pms;
sha1_init( &pms );
sha1_update( &pms, (sha1_byte_t *) input_buffer, length );
sha1_finish( &pms, (sha1_byte_t *) output );
}
#endif