transmission/libtransmission/crypto-utils.cc

234 lines
6.3 KiB
C++

// This file Copyright © 2007-2022 Mnemosyne LLC.
// It may be used under GPLv2 (SPDX: GPL-2.0), GPLv3 (SPDX: GPL-3.0),
// or any future license endorsed by Mnemosyne LLC.
// License text can be found in the licenses/ folder.
#include <algorithm>
#include <array>
#include <cctype>
#include <cstring> // memmove(), memset()
#include <iterator>
#include <random>
#include <string>
#include <string_view>
#include <arc4.h>
extern "C"
{
#include <b64/cdecode.h>
#include <b64/cencode.h>
}
#include "transmission.h"
#include "crypto-utils.h"
#include "tr-assert.h"
#include "utils.h"
using namespace std::literals;
/***
****
***/
void tr_dh_align_key(uint8_t* key_buffer, size_t key_size, size_t buffer_size)
{
TR_ASSERT(key_size <= buffer_size);
/* DH can generate key sizes that are smaller than the size of
key buffer with exponentially decreasing probability, in which case
the msb's of key buffer need to be zeroed appropriately. */
if (key_size < buffer_size)
{
size_t const offset = buffer_size - key_size;
memmove(key_buffer + offset, key_buffer, key_size);
memset(key_buffer, 0, offset);
}
}
/***
****
***/
int tr_rand_int(int upper_bound)
{
TR_ASSERT(upper_bound > 0);
if (unsigned int noise = 0; tr_rand_buffer(&noise, sizeof(noise)))
{
return noise % upper_bound;
}
/* fall back to a weaker implementation... */
return tr_rand_int_weak(upper_bound);
}
int tr_rand_int_weak(int upper_bound)
{
TR_ASSERT(upper_bound > 0);
thread_local auto random_engine = std::mt19937{ std::random_device{}() };
using distribution_type = std::uniform_int_distribution<>;
thread_local distribution_type distribution;
// Upper bound is inclusive in std::uniform_int_distribution.
return distribution(random_engine, distribution_type::param_type{ 0, upper_bound - 1 });
}
/***
****
***/
namespace
{
auto constexpr DigestStringSize = TR_SHA1_DIGEST_STRLEN;
auto constexpr SaltedPrefix = "{"sv;
std::string tr_salt(std::string_view plaintext, std::string_view salt)
{
static_assert(DigestStringSize == 40);
// build a sha1 digest of the original content and the salt
auto const digest = tr_sha1(plaintext, salt);
// convert it to a string. string holds three parts:
// DigestPrefix, stringified digest of plaintext + salt, and the salt.
return tr_strvJoin(SaltedPrefix, tr_sha1_to_string(*digest), salt);
}
} // namespace
std::string tr_ssha1(std::string_view plaintext)
{
// build an array of random Salter chars
auto constexpr Salter = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ./"sv;
static_assert(std::size(Salter) == 64);
auto constexpr SaltSize = size_t{ 8 };
auto salt = std::array<char, SaltSize>{};
tr_rand_buffer(std::data(salt), std::size(salt));
std::transform(
std::begin(salt),
std::end(salt),
std::begin(salt),
[&Salter](auto ch) { return Salter[ch % std::size(Salter)]; });
return tr_salt(plaintext, std::string_view{ std::data(salt), std::size(salt) });
}
bool tr_ssha1_test(std::string_view text)
{
return tr_strvStartsWith(text, SaltedPrefix) && std::size(text) >= std::size(SaltedPrefix) + DigestStringSize;
}
bool tr_ssha1_matches(std::string_view ssha1, std::string_view plaintext)
{
if (!tr_ssha1_test(ssha1))
{
return false;
}
auto const salt = ssha1.substr(std::size(SaltedPrefix) + DigestStringSize);
return tr_salt(plaintext, salt) == ssha1;
}
/***
****
***/
static size_t base64_alloc_size(std::string_view input)
{
size_t ret_length = 4 * ((std::size(input) + 2) / 3);
#ifdef USE_SYSTEM_B64
// Additional space is needed for newlines if we're using unpatched libb64
ret_length += ret_length / 72 + 1;
#endif
return ret_length * 8;
}
std::string tr_base64_encode(std::string_view input)
{
auto buf = std::vector<char>(base64_alloc_size(input));
auto state = base64_encodestate{};
base64_init_encodestate(&state);
size_t len = base64_encode_block(std::data(input), std::size(input), std::data(buf), &state);
len += base64_encode_blockend(std::data(buf) + len, &state);
auto str = std::string{};
std::copy_if(
std::data(buf),
std::data(buf) + len,
std::back_inserter(str),
[](auto ch) { return !tr_strvContains("\r\n"sv, ch); });
return str;
}
std::string tr_base64_decode(std::string_view input)
{
auto buf = std::vector<char>(std::size(input) + 8);
auto state = base64_decodestate{};
base64_init_decodestate(&state);
size_t const len = base64_decode_block(std::data(input), std::size(input), std::data(buf), &state);
return std::string{ std::data(buf), len };
}
/***
****
***/
static void tr_binary_to_hex(void const* vinput, void* voutput, size_t byte_length)
{
static char constexpr Hex[] = "0123456789abcdef";
auto const* input = static_cast<uint8_t const*>(vinput);
auto* output = static_cast<char*>(voutput);
/* go from back to front to allow for in-place conversion */
input += byte_length;
output += byte_length * 2;
*output = '\0';
while (byte_length-- > 0)
{
unsigned int const val = *(--input);
*(--output) = Hex[val & 0xf];
*(--output) = Hex[val >> 4];
}
}
std::string tr_sha1_to_string(tr_sha1_digest_t const& digest)
{
auto str = std::string(std::size(digest) * 2, '?');
tr_binary_to_hex(std::data(digest), std::data(str), std::size(digest));
return str;
}
char* tr_sha1_to_string(tr_sha1_digest_t const& digest, char* strbuf)
{
tr_binary_to_hex(std::data(digest), strbuf, std::size(digest));
return strbuf + (std::size(digest) * 2);
}
static void tr_hex_to_binary(char const* input, void* voutput, size_t byte_length)
{
static char constexpr Hex[] = "0123456789abcdef";
auto* output = static_cast<uint8_t*>(voutput);
for (size_t i = 0; i < byte_length; ++i)
{
int const hi = strchr(Hex, tolower(*input++)) - Hex;
int const lo = strchr(Hex, tolower(*input++)) - Hex;
*output++ = (uint8_t)((hi << 4) | lo);
}
}
tr_sha1_digest_t tr_sha1_from_string(std::string_view hex)
{
TR_ASSERT(std::size(hex) == TR_SHA1_DIGEST_STRLEN);
auto digest = tr_sha1_digest_t{};
tr_hex_to_binary(std::data(hex), std::data(digest), std::size(digest));
return digest;
}