mirror of
https://github.com/transmission/transmission
synced 2024-12-27 01:57:52 +00:00
407 lines
11 KiB
C
407 lines
11 KiB
C
/*
|
|
* This file Copyright (C) Mnemosyne LLC
|
|
*
|
|
* This file is licensed by the GPL version 2. Works owned by the
|
|
* Transmission project are granted a special exemption to clause 2(b)
|
|
* so that the bulk of its code can remain under the MIT license.
|
|
* This exemption does not extend to derived works not owned by
|
|
* the Transmission project.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h> /* memset() */
|
|
|
|
#include "transmission.h"
|
|
#include "bandwidth.h"
|
|
#include "crypto.h" /* tr_cryptoWeakRandInt() */
|
|
#include "peer-io.h"
|
|
#include "utils.h"
|
|
|
|
#define dbgmsg( ... ) \
|
|
do { \
|
|
if( tr_deepLoggingIsActive( ) ) \
|
|
tr_deepLog( __FILE__, __LINE__, NULL, __VA_ARGS__ ); \
|
|
} while( 0 )
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static unsigned int
|
|
getSpeed_Bps( const struct bratecontrol * r, unsigned int interval_msec, uint64_t now )
|
|
{
|
|
if( !now )
|
|
now = tr_time_msec();
|
|
|
|
if( now != r->cache_time )
|
|
{
|
|
int i = r->newest;
|
|
uint64_t bytes = 0;
|
|
const uint64_t cutoff = now - interval_msec;
|
|
struct bratecontrol * rvolatile = (struct bratecontrol*) r;
|
|
|
|
for( ;; )
|
|
{
|
|
if( r->transfers[i].date <= cutoff )
|
|
break;
|
|
|
|
bytes += r->transfers[i].size;
|
|
|
|
if( --i == -1 ) i = HISTORY_SIZE - 1; /* circular history */
|
|
if( i == r->newest ) break; /* we've come all the way around */
|
|
}
|
|
|
|
rvolatile->cache_val = (unsigned int)(( bytes * 1000u ) / interval_msec);
|
|
rvolatile->cache_time = now;
|
|
}
|
|
|
|
return r->cache_val;
|
|
}
|
|
|
|
static void
|
|
bytesUsed( const uint64_t now, struct bratecontrol * r, size_t size )
|
|
{
|
|
if( r->transfers[r->newest].date + GRANULARITY_MSEC >= now )
|
|
r->transfers[r->newest].size += size;
|
|
else
|
|
{
|
|
if( ++r->newest == HISTORY_SIZE ) r->newest = 0;
|
|
r->transfers[r->newest].date = now;
|
|
r->transfers[r->newest].size = size;
|
|
}
|
|
|
|
/* invalidate cache_val*/
|
|
r->cache_time = 0;
|
|
}
|
|
|
|
/******
|
|
*******
|
|
*******
|
|
******/
|
|
|
|
static int
|
|
compareBandwidth( const void * va, const void * vb )
|
|
{
|
|
const tr_bandwidth * a = va;
|
|
const tr_bandwidth * b = vb;
|
|
return a->uniqueKey - b->uniqueKey;
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
void
|
|
tr_bandwidthConstruct( tr_bandwidth * b, tr_session * session, tr_bandwidth * parent )
|
|
{
|
|
static unsigned int uniqueKey = 0;
|
|
|
|
b->session = session;
|
|
b->children = TR_PTR_ARRAY_INIT;
|
|
b->magicNumber = BANDWIDTH_MAGIC_NUMBER;
|
|
b->uniqueKey = uniqueKey++;
|
|
b->band[TR_UP].honorParentLimits = true;
|
|
b->band[TR_DOWN].honorParentLimits = true;
|
|
tr_bandwidthSetParent( b, parent );
|
|
}
|
|
|
|
void
|
|
tr_bandwidthDestruct( tr_bandwidth * b )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
|
|
tr_bandwidthSetParent( b, NULL );
|
|
tr_ptrArrayDestruct( &b->children, NULL );
|
|
|
|
memset( b, ~0, sizeof( tr_bandwidth ) );
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
void
|
|
tr_bandwidthSetParent( tr_bandwidth * b,
|
|
tr_bandwidth * parent )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( b != parent );
|
|
|
|
if( b->parent )
|
|
{
|
|
void * removed;
|
|
|
|
assert( tr_isBandwidth( b->parent ) );
|
|
|
|
removed = tr_ptrArrayRemoveSorted( &b->parent->children, b, compareBandwidth );
|
|
assert( removed == b );
|
|
assert( tr_ptrArrayFindSorted( &b->parent->children, b, compareBandwidth ) == NULL );
|
|
|
|
b->parent = NULL;
|
|
}
|
|
|
|
if( parent )
|
|
{
|
|
assert( tr_isBandwidth( parent ) );
|
|
assert( parent->parent != b );
|
|
|
|
assert( tr_ptrArrayFindSorted( &parent->children, b, compareBandwidth ) == NULL );
|
|
tr_ptrArrayInsertSorted( &parent->children, b, compareBandwidth );
|
|
assert( tr_ptrArrayFindSorted( &parent->children, b, compareBandwidth ) == b );
|
|
b->parent = parent;
|
|
}
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static void
|
|
allocateBandwidth( tr_bandwidth * b,
|
|
tr_priority_t parent_priority,
|
|
tr_direction dir,
|
|
unsigned int period_msec,
|
|
tr_ptrArray * peer_pool )
|
|
{
|
|
const tr_priority_t priority = MAX( parent_priority, b->priority );
|
|
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( tr_isDirection( dir ) );
|
|
|
|
/* set the available bandwidth */
|
|
if( b->band[dir].isLimited )
|
|
{
|
|
const unsigned int nextPulseSpeed = b->band[dir].desiredSpeed_Bps;
|
|
b->band[dir].bytesLeft = ( nextPulseSpeed * period_msec ) / 1000u;
|
|
}
|
|
|
|
/* add this bandwidth's peer, if any, to the peer pool */
|
|
if( b->peer != NULL ) {
|
|
b->peer->priority = priority;
|
|
tr_ptrArrayAppend( peer_pool, b->peer );
|
|
}
|
|
|
|
/* traverse & repeat for the subtree */
|
|
if( 1 ) {
|
|
int i;
|
|
struct tr_bandwidth ** children = (struct tr_bandwidth**) tr_ptrArrayBase( &b->children );
|
|
const int n = tr_ptrArraySize( &b->children );
|
|
for( i=0; i<n; ++i )
|
|
allocateBandwidth( children[i], priority, dir, period_msec, peer_pool );
|
|
}
|
|
}
|
|
|
|
static void
|
|
phaseOne( tr_ptrArray * peerArray, tr_direction dir )
|
|
{
|
|
int i, n;
|
|
int peerCount = tr_ptrArraySize( peerArray );
|
|
struct tr_peerIo ** peers = (struct tr_peerIo**) tr_ptrArrayBase( peerArray );
|
|
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
n = peerCount;
|
|
dbgmsg( "%d peers to go round-robin for %s", n, (dir==TR_UP?"upload":"download") );
|
|
i = n ? tr_cryptoWeakRandInt( n ) : 0; /* pick a random starting point */
|
|
while( n > 0 )
|
|
{
|
|
/* value of 3000 bytes chosen so that when using uTP we'll send a full-size
|
|
* frame right away and leave enough buffered data for the next frame to go
|
|
* out in a timely manner. */
|
|
const size_t increment = 3000;
|
|
|
|
const int bytesUsed = tr_peerIoFlush( peers[i], dir, increment );
|
|
|
|
dbgmsg( "peer #%d of %d used %d bytes in this pass", i, n, bytesUsed );
|
|
|
|
if( bytesUsed == (int)increment )
|
|
++i;
|
|
else {
|
|
/* peer is done writing for now; move it to the end of the list */
|
|
tr_peerIo * pio = peers[i];
|
|
peers[i] = peers[n-1];
|
|
peers[n-1] = pio;
|
|
--n;
|
|
}
|
|
|
|
if( i >= n )
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
tr_bandwidthAllocate( tr_bandwidth * b,
|
|
tr_direction dir,
|
|
unsigned int period_msec )
|
|
{
|
|
int i, peerCount;
|
|
tr_ptrArray tmp = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray low = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray high = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray normal = TR_PTR_ARRAY_INIT;
|
|
struct tr_peerIo ** peers;
|
|
|
|
/* allocateBandwidth() is a helper function with two purposes:
|
|
* 1. allocate bandwidth to b and its subtree
|
|
* 2. accumulate an array of all the peerIos from b and its subtree. */
|
|
allocateBandwidth( b, TR_PRI_LOW, dir, period_msec, &tmp );
|
|
peers = (struct tr_peerIo**) tr_ptrArrayBase( &tmp );
|
|
peerCount = tr_ptrArraySize( &tmp );
|
|
|
|
for( i=0; i<peerCount; ++i )
|
|
{
|
|
tr_peerIo * io = peers[i];
|
|
tr_peerIoRef( io );
|
|
|
|
tr_peerIoFlushOutgoingProtocolMsgs( io );
|
|
|
|
switch( io->priority ) {
|
|
case TR_PRI_HIGH: tr_ptrArrayAppend( &high, io ); /* fall through */
|
|
case TR_PRI_NORMAL: tr_ptrArrayAppend( &normal, io ); /* fall through */
|
|
default: tr_ptrArrayAppend( &low, io );
|
|
}
|
|
}
|
|
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
phaseOne( &high, dir );
|
|
phaseOne( &normal, dir );
|
|
phaseOne( &low, dir );
|
|
|
|
/* Second phase of IO. To help us scale in high bandwidth situations,
|
|
* enable on-demand IO for peers with bandwidth left to burn.
|
|
* This on-demand IO is enabled until (1) the peer runs out of bandwidth,
|
|
* or (2) the next tr_bandwidthAllocate() call, when we start over again. */
|
|
for( i=0; i<peerCount; ++i )
|
|
tr_peerIoSetEnabled( peers[i], dir, tr_peerIoHasBandwidthLeft( peers[i], dir ) );
|
|
|
|
for( i=0; i<peerCount; ++i )
|
|
tr_peerIoUnref( peers[i] );
|
|
|
|
/* cleanup */
|
|
tr_ptrArrayDestruct( &normal, NULL );
|
|
tr_ptrArrayDestruct( &high, NULL );
|
|
tr_ptrArrayDestruct( &low, NULL );
|
|
tr_ptrArrayDestruct( &tmp, NULL );
|
|
}
|
|
|
|
void
|
|
tr_bandwidthSetPeer( tr_bandwidth * b, tr_peerIo * peer )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( ( peer == NULL ) || tr_isPeerIo( peer ) );
|
|
|
|
b->peer = peer;
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static unsigned int
|
|
bandwidthClamp( const tr_bandwidth * b,
|
|
uint64_t now,
|
|
tr_direction dir,
|
|
unsigned int byteCount )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( tr_isDirection( dir ) );
|
|
|
|
if( b )
|
|
{
|
|
if( b->band[dir].isLimited )
|
|
{
|
|
byteCount = MIN( byteCount, b->band[dir].bytesLeft );
|
|
|
|
/* if we're getting close to exceeding the speed limit,
|
|
* clamp down harder on the bytes available */
|
|
if( byteCount > 0 )
|
|
{
|
|
double current;
|
|
double desired;
|
|
double r;
|
|
|
|
if( now == 0 )
|
|
now = tr_time_msec( );
|
|
|
|
current = tr_bandwidthGetRawSpeed_Bps( b, now, TR_DOWN );
|
|
desired = tr_bandwidthGetDesiredSpeed_Bps( b, TR_DOWN );
|
|
r = desired >= 1 ? current / desired : 0;
|
|
|
|
if( r > 1.0 ) byteCount = 0;
|
|
else if( r > 0.9 ) byteCount *= 0.8;
|
|
else if( r > 0.8 ) byteCount *= 0.9;
|
|
}
|
|
}
|
|
|
|
if( b->parent && b->band[dir].honorParentLimits && ( byteCount > 0 ) )
|
|
byteCount = bandwidthClamp( b->parent, now, dir, byteCount );
|
|
}
|
|
|
|
return byteCount;
|
|
}
|
|
unsigned int
|
|
tr_bandwidthClamp( const tr_bandwidth * b,
|
|
tr_direction dir,
|
|
unsigned int byteCount )
|
|
{
|
|
return bandwidthClamp( b, 0, dir, byteCount );
|
|
}
|
|
|
|
|
|
unsigned int
|
|
tr_bandwidthGetRawSpeed_Bps( const tr_bandwidth * b, const uint64_t now, const tr_direction dir )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( tr_isDirection( dir ) );
|
|
|
|
return getSpeed_Bps( &b->band[dir].raw, HISTORY_MSEC, now );
|
|
}
|
|
|
|
unsigned int
|
|
tr_bandwidthGetPieceSpeed_Bps( const tr_bandwidth * b, const uint64_t now, const tr_direction dir )
|
|
{
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( tr_isDirection( dir ) );
|
|
|
|
return getSpeed_Bps( &b->band[dir].piece, HISTORY_MSEC, now );
|
|
}
|
|
|
|
void
|
|
tr_bandwidthUsed( tr_bandwidth * b,
|
|
tr_direction dir,
|
|
size_t byteCount,
|
|
bool isPieceData,
|
|
uint64_t now )
|
|
{
|
|
struct tr_band * band;
|
|
|
|
assert( tr_isBandwidth( b ) );
|
|
assert( tr_isDirection( dir ) );
|
|
|
|
band = &b->band[dir];
|
|
|
|
if( band->isLimited && isPieceData )
|
|
band->bytesLeft -= MIN( band->bytesLeft, byteCount );
|
|
|
|
#ifdef DEBUG_DIRECTION
|
|
if( ( dir == DEBUG_DIRECTION ) && ( band->isLimited ) )
|
|
fprintf( stderr, "%p consumed %5zu bytes of %5s data... was %6zu, now %6zu left\n",
|
|
b, byteCount, (isPieceData?"piece":"raw"), oldBytesLeft, band->bytesLeft );
|
|
#endif
|
|
|
|
bytesUsed( now, &band->raw, byteCount );
|
|
|
|
if( isPieceData )
|
|
bytesUsed( now, &band->piece, byteCount );
|
|
|
|
if( b->parent != NULL )
|
|
tr_bandwidthUsed( b->parent, dir, byteCount, isPieceData, now );
|
|
}
|