1
0
Fork 0
mirror of https://github.com/transmission/transmission synced 2025-01-03 21:45:49 +00:00
transmission/third-party/libutp/utp_utils.cpp
2015-10-16 20:27:52 +00:00

210 lines
6.1 KiB
C++

#include "StdAfx.h"
#include "utypes.h"
#include <assert.h>
#include <stdlib.h>
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
typedef ULONGLONG (WINAPI GetTickCount64Proc)(void);
static GetTickCount64Proc *pt2GetTickCount64;
static GetTickCount64Proc *pt2RealGetTickCount;
static uint64 startPerformanceCounter;
static uint64 startGetTickCount;
// MSVC 6 standard doesn't like division with uint64s
static double counterPerMicrosecond;
uint64 UTGetTickCount64()
{
if (pt2GetTickCount64) {
return pt2GetTickCount64();
}
if (pt2RealGetTickCount) {
uint64 v = pt2RealGetTickCount();
// fix return value from GetTickCount
return (DWORD)v | ((v >> 0x18) & 0xFFFFFFFF00000000);
}
return (uint64)GetTickCount();
}
void Time_Initialize()
{
HMODULE kernel32 = GetModuleHandleA("kernel32.dll");
pt2GetTickCount64 = (GetTickCount64Proc*)GetProcAddress(kernel32, "GetTickCount64");
// not a typo. GetTickCount actually returns 64 bits
pt2RealGetTickCount = (GetTickCount64Proc*)GetProcAddress(kernel32, "GetTickCount");
uint64 frequency;
QueryPerformanceCounter((LARGE_INTEGER*)&startPerformanceCounter);
QueryPerformanceFrequency((LARGE_INTEGER*)&frequency);
counterPerMicrosecond = (double)frequency / 1000000.0f;
startGetTickCount = UTGetTickCount64();
}
int64 abs64(int64 x) { return x < 0 ? -x : x; }
static uint64 GetMicroseconds()
{
static bool time_init = false;
if (!time_init) {
time_init = true;
Time_Initialize();
}
uint64 counter;
uint64 tick;
QueryPerformanceCounter((LARGE_INTEGER*) &counter);
tick = UTGetTickCount64();
// unfortunately, QueryPerformanceCounter is not guaranteed
// to be monotonic. Make it so.
int64 ret = (int64)(((int64)counter - (int64)startPerformanceCounter) / counterPerMicrosecond);
// if the QPC clock leaps more than one second off GetTickCount64()
// something is seriously fishy. Adjust QPC to stay monotonic
int64 tick_diff = tick - startGetTickCount;
if (abs64(ret / 100000 - tick_diff / 100) > 10) {
startPerformanceCounter -= (uint64)((int64)(tick_diff * 1000 - ret) * counterPerMicrosecond);
ret = (int64)((counter - startPerformanceCounter) / counterPerMicrosecond);
}
return ret;
}
#else //!WIN32
#include <time.h>
#include <sys/time.h> // Linux needs both time.h and sys/time.h
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#if defined(__APPLE__)
#include <mach/mach_time.h>
static uint64 GetMicroseconds()
{
// http://developer.apple.com/mac/library/qa/qa2004/qa1398.html
// http://www.macresearch.org/tutorial_performance_and_time
static mach_timebase_info_data_t sTimebaseInfo;
static uint64_t start_tick = 0;
uint64_t tick;
// Returns a counter in some fraction of a nanoseconds
tick = mach_absolute_time();
if (sTimebaseInfo.denom == 0) {
// Get the timer ratio to convert mach_absolute_time to nanoseconds
mach_timebase_info(&sTimebaseInfo);
start_tick = tick;
}
// Calculate the elapsed time, convert it to microseconds and return it.
return ((tick - start_tick) * sTimebaseInfo.numer) / (sTimebaseInfo.denom * 1000);
}
#else //!__APPLE__
/* Unfortunately, #ifdef CLOCK_MONOTONIC is not enough to make sure that
POSIX clocks work -- we could be running a recent libc with an ancient
kernel (think OpenWRT). -- jch */
static uint64_t GetMicroseconds()
{
static int have_posix_clocks = -1;
int rc;
#if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0 && defined(CLOCK_MONOTONIC)
if (have_posix_clocks < 0) {
struct timespec ts;
rc = clock_gettime(CLOCK_MONOTONIC, &ts);
if (rc < 0) {
have_posix_clocks = 0;
} else {
have_posix_clocks = 1;
}
}
if (have_posix_clocks) {
struct timespec ts;
rc = clock_gettime(CLOCK_MONOTONIC, &ts);
return uint64(ts.tv_sec) * 1000000 + ts.tv_nsec / 1000;
}
#endif
{
struct timeval tv;
rc = gettimeofday(&tv, NULL);
return uint64(tv.tv_sec) * 1000000 + tv.tv_usec;
}
}
#endif //!__APPLE__
#endif //!WIN32
uint64 UTP_GetMicroseconds()
{
static uint64 offset = 0, previous = 0;
uint64 now = GetMicroseconds() + offset;
if (previous > now) {
/* Eek! */
offset += previous - now;
now = previous;
}
previous = now;
return now;
}
uint32 UTP_GetMilliseconds()
{
return UTP_GetMicroseconds() / 1000;
}
#define ETHERNET_MTU 1500
#define IPV4_HEADER_SIZE 20
#define IPV6_HEADER_SIZE 40
#define UDP_HEADER_SIZE 8
#define GRE_HEADER_SIZE 24
#define PPPOE_HEADER_SIZE 8
#define MPPE_HEADER_SIZE 2
// packets have been observed in the wild that were fragmented
// with a payload of 1416 for the first fragment
// There are reports of routers that have MTU sizes as small as 1392
#define FUDGE_HEADER_SIZE 36
#define TEREDO_MTU 1280
#define UDP_IPV4_OVERHEAD (IPV4_HEADER_SIZE + UDP_HEADER_SIZE)
#define UDP_IPV6_OVERHEAD (IPV6_HEADER_SIZE + UDP_HEADER_SIZE)
#define UDP_TEREDO_OVERHEAD (UDP_IPV4_OVERHEAD + UDP_IPV6_OVERHEAD)
#define UDP_IPV4_MTU (ETHERNET_MTU - IPV4_HEADER_SIZE - UDP_HEADER_SIZE - GRE_HEADER_SIZE - PPPOE_HEADER_SIZE - MPPE_HEADER_SIZE - FUDGE_HEADER_SIZE)
#define UDP_IPV6_MTU (ETHERNET_MTU - IPV6_HEADER_SIZE - UDP_HEADER_SIZE - GRE_HEADER_SIZE - PPPOE_HEADER_SIZE - MPPE_HEADER_SIZE - FUDGE_HEADER_SIZE)
#define UDP_TEREDO_MTU (TEREDO_MTU - IPV6_HEADER_SIZE - UDP_HEADER_SIZE)
uint16 UTP_GetUDPMTU(const struct sockaddr *remote, socklen_t remotelen)
{
// Since we don't know the local address of the interface,
// be conservative and assume all IPv6 connections are Teredo.
return remote->sa_family == AF_INET6 ? UDP_TEREDO_MTU : UDP_IPV4_MTU;
}
uint16 UTP_GetUDPOverhead(const struct sockaddr *remote, socklen_t remotelen)
{
// Since we don't know the local address of the interface,
// be conservative and assume all IPv6 connections are Teredo.
return remote->sa_family == AF_INET6 ? UDP_TEREDO_OVERHEAD : UDP_IPV4_OVERHEAD;
}
uint32 UTP_Random()
{
return rand();
}
void UTP_DelaySample(const struct sockaddr *remote, int sample_ms) {}
size_t UTP_GetPacketSize(const struct sockaddr *remote) { return 1500; }