1
0
Fork 0
mirror of https://github.com/transmission/transmission synced 2024-12-27 18:18:10 +00:00
transmission/libtransmission/bandwidth.h
Charles Kerr 62372602b4
refactor: run clang-tidy on bandwidth.h, .cc (#1930)
* chore: allow vararg calls in qt/.clang-tidy

An awkward PR since this isn't intended for the qt/ codebase at all, but
rather for use with libtransmission instead. But libtransmission is *so*
noncompilant at this point that this config can't be promoted higher up
the tree yet. Instead, it needs to be callable on-request by devs.

* refactor: make clang-tidy happy with bandwidth.h, .cc

* refactor: use getFooSpeedBytesPerSecond()
2021-10-12 01:04:22 -05:00

255 lines
7.7 KiB
C++

/*
* This file Copyright (C) 2008-2014 Mnemosyne LLC
*
* It may be used under the GNU GPL versions 2 or 3
* or any future license endorsed by Mnemosyne LLC.
*
*/
#pragma once
#ifndef __TRANSMISSION__
#error only libtransmission should #include this header.
#endif
#include <array>
#include <unordered_set>
#include "transmission.h"
#include "tr-assert.h"
#include "utils.h" /* tr_new(), tr_free() */
class tr_peerIo;
/**
* @addtogroup networked_io Networked IO
* @{
*/
/**
* Bandwidth is an object for measuring and constraining bandwidth speeds.
*
* Bandwidth objects can be "stacked" so that a peer can be made to obey
* multiple constraints (for example, obeying the global speed limit and a
* per-torrent speed limit).
*
* HIERARCHY
*
* Transmission's bandwidth hierarchy is a tree.
* At the top is the global bandwidth object owned by tr_session.
* Its children are per-torrent bandwidth objects owned by tr_torrent.
* Underneath those are per-peer bandwidth objects owned by tr_peer.
*
* tr_session also owns a tr_handshake's bandwidths, so that the handshake
* I/O can be counted in the global raw totals. When the handshake is done,
* the bandwidth's ownership passes to a tr_peer.
*
* MEASURING
*
* When you ask a bandwidth object for its speed, it gives the speed of the
* subtree underneath it as well. So you can get Transmission's overall
* speed by quering tr_session's bandwidth, per-torrent speeds by asking
* tr_torrent's bandwidth, and per-peer speeds by asking tr_peer's bandwidth.
*
* CONSTRAINING
*
* Call Bandwidth::allocate() periodically. tr_bandwidth knows its current
* speed and will decide how many bytes to make available over the
* user-specified period to reach the user-specified desired speed.
* If appropriate, it notifies its peer-ios that new bandwidth is available.
*
* Bandwidth::allocate() operates on the tr_bandwidth subtree, so usually
* you'll only need to invoke it for the top-level tr_session bandwidth.
*
* The peer-ios all have a pointer to their associated tr_bandwidth object,
* and call Bandwidth::clamp() before performing I/O to see how much
* bandwidth they can safely use.
*/
struct Bandwidth
{
public:
explicit Bandwidth(Bandwidth* newParent);
Bandwidth()
: Bandwidth(nullptr)
{
}
~Bandwidth()
{
this->setParent(nullptr);
}
Bandwidth& operator=(Bandwidth&&) = delete;
Bandwidth& operator=(Bandwidth) = delete;
Bandwidth(Bandwidth&&) = delete;
Bandwidth(Bandwidth&) = delete;
/**
* @brief Sets new peer, nullptr is allowed.
*/
constexpr void setPeer(tr_peerIo* peer)
{
this->peer_ = peer;
}
/**
* @brief Notify the bandwidth object that some of its allocated bandwidth has been consumed.
* This is is usually invoked by the peer-io after a read or write.
*/
void notifyBandwidthConsumed(tr_direction dir, size_t byte_count, bool is_piece_data, uint64_t now);
/**
* @brief allocate the next period_msec's worth of bandwidth for the peer-ios to consume
*/
void allocate(tr_direction dir, unsigned int period_msec);
void setParent(Bandwidth* newParent);
[[nodiscard]] constexpr tr_priority_t getPriority() const
{
return this->priority_;
}
constexpr void setPriority(tr_priority_t prio)
{
this->priority_ = prio;
}
/**
* @brief clamps byte_count down to a number that this bandwidth will allow to be consumed
*/
[[nodiscard]] unsigned int clamp(tr_direction dir, unsigned int byte_count) const
{
return this->clamp(0, dir, byte_count);
}
/** @brief Get the raw total of bytes read or sent by this bandwidth subtree. */
[[nodiscard]] unsigned int getRawSpeedBytesPerSecond(uint64_t const now, tr_direction const dir) const
{
TR_ASSERT(tr_isDirection(dir));
return getSpeedBytesPerSecond(this->band_[dir].raw_, HistoryMSec, now);
}
/** @brief Get the number of piece data bytes read or sent by this bandwidth subtree. */
[[nodiscard]] unsigned int getPieceSpeedBytesPerSecond(uint64_t const now, tr_direction const dir) const
{
TR_ASSERT(tr_isDirection(dir));
return getSpeedBytesPerSecond(this->band_[dir].piece_, HistoryMSec, now);
}
/**
* @brief Set the desired speed for this bandwidth subtree.
* @see Bandwidth::allocate
* @see Bandwidth::getDesiredSpeed
*/
constexpr bool setDesiredSpeedBytesPerSecond(tr_direction dir, unsigned int desired_speed)
{
auto& value = this->band_[dir].desired_speed_bps_;
bool const did_change = desired_speed != value;
value = desired_speed;
return did_change;
}
/**
* @brief Get the desired speed for the bandwidth subtree.
* @see Bandwidth::setDesiredSpeed
*/
[[nodiscard]] constexpr double getDesiredSpeedBytesPerSecond(tr_direction dir) const
{
return this->band_[dir].desired_speed_bps_;
}
/**
* @brief Set whether or not this bandwidth should throttle its peer-io's speeds
*/
constexpr bool setLimited(tr_direction dir, bool is_limited)
{
bool* value = &this->band_[dir].is_limited_;
bool const did_change = is_limited != *value;
*value = is_limited;
return did_change;
}
/**
* @return nonzero if this bandwidth throttles its peer-ios speeds
*/
[[nodiscard]] constexpr bool isLimited(tr_direction dir) const
{
return this->band_[dir].is_limited_;
}
/**
* Almost all the time we do want to honor a parents' bandwidth cap, so that
* (for example) a peer is constrained by a per-torrent cap and the global cap.
* But when we set a torrent's speed mode to TR_SPEEDLIMIT_UNLIMITED, then
* in that particular case we want to ignore the global speed limit...
*/
constexpr bool honorParentLimits(tr_direction direction, bool is_enabled)
{
bool* value = &this->band_[direction].honor_parent_limits_;
bool const did_change = is_enabled != *value;
*value = is_enabled;
return did_change;
}
[[nodiscard]] constexpr bool areParentLimitsHonored(tr_direction direction) const
{
TR_ASSERT(tr_isDirection(direction));
return this->band_[direction].honor_parent_limits_;
}
static constexpr size_t HistoryMSec = 2000U;
static constexpr size_t IntervalMSec = HistoryMSec;
static constexpr size_t GranularityMSec = 200;
static constexpr size_t HistorySize = (IntervalMSec / GranularityMSec);
struct RateControl
{
struct Transfer
{
uint64_t date_;
uint64_t size_;
};
std::array<Transfer, HistorySize> transfers_;
uint64_t cache_time_;
unsigned int cache_val_;
int newest_;
};
struct Band
{
RateControl raw_;
RateControl piece_;
unsigned int bytes_left_;
unsigned int desired_speed_bps_;
bool is_limited_;
bool honor_parent_limits_;
};
private:
static unsigned int getSpeedBytesPerSecond(RateControl& r, unsigned int interval_msec, uint64_t now);
static void notifyBandwidthConsumedBytes(uint64_t now, RateControl* r, size_t size);
[[nodiscard]] unsigned int clamp(uint64_t now, tr_direction dir, unsigned int byte_count) const;
static void phaseOne(std::vector<tr_peerIo*>& peer_array, tr_direction dir);
void allocateBandwidth(
tr_priority_t parent_priority,
tr_direction dir,
unsigned int period_msec,
std::vector<tr_peerIo*>& peer_pool);
mutable std::array<Band, 2> band_ = {};
Bandwidth* parent_ = nullptr;
std::unordered_set<Bandwidth*> children_;
tr_peerIo* peer_ = nullptr;
tr_priority_t priority_ = 0;
};
/* @} */