mirror of
https://github.com/transmission/transmission
synced 2024-12-26 09:37:56 +00:00
416 lines
11 KiB
C
416 lines
11 KiB
C
/*
|
|
* This file Copyright (C) Mnemosyne LLC
|
|
*
|
|
* This file is licensed by the GPL version 2. Works owned by the
|
|
* Transmission project are granted a special exemption to clause 2 (b)
|
|
* so that the bulk of its code can remain under the MIT license.
|
|
* This exemption does not extend to derived works not owned by
|
|
* the Transmission project.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h> /* memset () */
|
|
|
|
#include "transmission.h"
|
|
#include "bandwidth.h"
|
|
#include "crypto.h" /* tr_cryptoWeakRandInt () */
|
|
#include "log.h"
|
|
#include "peer-io.h"
|
|
#include "utils.h"
|
|
|
|
#define dbgmsg(...) \
|
|
do \
|
|
{ \
|
|
if (tr_logGetDeepEnabled ()) \
|
|
tr_logAddDeep (__FILE__, __LINE__, NULL, __VA_ARGS__); \
|
|
} \
|
|
while (0)
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static unsigned int
|
|
getSpeed_Bps (const struct bratecontrol * r, unsigned int interval_msec, uint64_t now)
|
|
{
|
|
if (!now)
|
|
now = tr_time_msec ();
|
|
|
|
if (now != r->cache_time)
|
|
{
|
|
int i = r->newest;
|
|
uint64_t bytes = 0;
|
|
const uint64_t cutoff = now - interval_msec;
|
|
struct bratecontrol * rvolatile = (struct bratecontrol*) r;
|
|
|
|
for (;;)
|
|
{
|
|
if (r->transfers[i].date <= cutoff)
|
|
break;
|
|
|
|
bytes += r->transfers[i].size;
|
|
|
|
if (--i == -1)
|
|
i = HISTORY_SIZE - 1; /* circular history */
|
|
|
|
if (i == r->newest)
|
|
break; /* we've come all the way around */
|
|
}
|
|
|
|
rvolatile->cache_val = (unsigned int)((bytes * 1000u) / interval_msec);
|
|
rvolatile->cache_time = now;
|
|
}
|
|
|
|
return r->cache_val;
|
|
}
|
|
|
|
static void
|
|
bytesUsed (const uint64_t now, struct bratecontrol * r, size_t size)
|
|
{
|
|
if (r->transfers[r->newest].date + GRANULARITY_MSEC >= now)
|
|
{
|
|
r->transfers[r->newest].size += size;
|
|
}
|
|
else
|
|
{
|
|
if (++r->newest == HISTORY_SIZE)
|
|
r->newest = 0;
|
|
r->transfers[r->newest].date = now;
|
|
r->transfers[r->newest].size = size;
|
|
}
|
|
|
|
/* invalidate cache_val*/
|
|
r->cache_time = 0;
|
|
}
|
|
|
|
/******
|
|
*******
|
|
*******
|
|
******/
|
|
|
|
static int
|
|
compareBandwidth (const void * va, const void * vb)
|
|
{
|
|
const tr_bandwidth * a = va;
|
|
const tr_bandwidth * b = vb;
|
|
return a->uniqueKey - b->uniqueKey;
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
void
|
|
tr_bandwidthConstruct (tr_bandwidth * b, tr_session * session, tr_bandwidth * parent)
|
|
{
|
|
static unsigned int uniqueKey = 0;
|
|
|
|
b->session = session;
|
|
b->children = TR_PTR_ARRAY_INIT;
|
|
b->magicNumber = BANDWIDTH_MAGIC_NUMBER;
|
|
b->uniqueKey = uniqueKey++;
|
|
b->band[TR_UP].honorParentLimits = true;
|
|
b->band[TR_DOWN].honorParentLimits = true;
|
|
tr_bandwidthSetParent (b, parent);
|
|
}
|
|
|
|
void
|
|
tr_bandwidthDestruct (tr_bandwidth * b)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
|
|
tr_bandwidthSetParent (b, NULL);
|
|
tr_ptrArrayDestruct (&b->children, NULL);
|
|
|
|
memset (b, ~0, sizeof (tr_bandwidth));
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
void
|
|
tr_bandwidthSetParent (tr_bandwidth * b,
|
|
tr_bandwidth * parent)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
assert (b != parent);
|
|
|
|
if (b->parent)
|
|
{
|
|
void * removed;
|
|
|
|
assert (tr_isBandwidth (b->parent));
|
|
|
|
removed = tr_ptrArrayRemoveSorted (&b->parent->children, b, compareBandwidth);
|
|
assert (removed == b);
|
|
assert (tr_ptrArrayFindSorted (&b->parent->children, b, compareBandwidth) == NULL);
|
|
|
|
b->parent = NULL;
|
|
}
|
|
|
|
if (parent)
|
|
{
|
|
assert (tr_isBandwidth (parent));
|
|
assert (parent->parent != b);
|
|
|
|
assert (tr_ptrArrayFindSorted (&parent->children, b, compareBandwidth) == NULL);
|
|
tr_ptrArrayInsertSorted (&parent->children, b, compareBandwidth);
|
|
assert (tr_ptrArrayFindSorted (&parent->children, b, compareBandwidth) == b);
|
|
b->parent = parent;
|
|
}
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static void
|
|
allocateBandwidth (tr_bandwidth * b,
|
|
tr_priority_t parent_priority,
|
|
tr_direction dir,
|
|
unsigned int period_msec,
|
|
tr_ptrArray * peer_pool)
|
|
{
|
|
const tr_priority_t priority = MAX (parent_priority, b->priority);
|
|
|
|
assert (tr_isBandwidth (b));
|
|
assert (tr_isDirection (dir));
|
|
|
|
/* set the available bandwidth */
|
|
if (b->band[dir].isLimited)
|
|
{
|
|
const uint64_t nextPulseSpeed = b->band[dir].desiredSpeed_Bps;
|
|
b->band[dir].bytesLeft = nextPulseSpeed * period_msec / 1000u;
|
|
}
|
|
|
|
/* add this bandwidth's peer, if any, to the peer pool */
|
|
if (b->peer != NULL)
|
|
{
|
|
b->peer->priority = priority;
|
|
tr_ptrArrayAppend (peer_pool, b->peer);
|
|
}
|
|
|
|
/* traverse & repeat for the subtree */
|
|
if (1)
|
|
{
|
|
int i;
|
|
struct tr_bandwidth ** children = (struct tr_bandwidth**) tr_ptrArrayBase (&b->children);
|
|
const int n = tr_ptrArraySize (&b->children);
|
|
for (i=0; i<n; ++i)
|
|
allocateBandwidth (children[i], priority, dir, period_msec, peer_pool);
|
|
}
|
|
}
|
|
|
|
static void
|
|
phaseOne (tr_ptrArray * peerArray, tr_direction dir)
|
|
{
|
|
int n;
|
|
int peerCount = tr_ptrArraySize (peerArray);
|
|
struct tr_peerIo ** peers = (struct tr_peerIo**) tr_ptrArrayBase (peerArray);
|
|
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
n = peerCount;
|
|
dbgmsg ("%d peers to go round-robin for %s", n, (dir==TR_UP?"upload":"download"));
|
|
while (n > 0)
|
|
{
|
|
const int i = tr_cryptoWeakRandInt (n); /* pick a peer at random */
|
|
|
|
/* value of 3000 bytes chosen so that when using uTP we'll send a full-size
|
|
* frame right away and leave enough buffered data for the next frame to go
|
|
* out in a timely manner. */
|
|
const size_t increment = 3000;
|
|
|
|
const int bytesUsed = tr_peerIoFlush (peers[i], dir, increment);
|
|
|
|
dbgmsg ("peer #%d of %d used %d bytes in this pass", i, n, bytesUsed);
|
|
|
|
if (bytesUsed != (int)increment)
|
|
{
|
|
/* peer is done writing for now; move it to the end of the list */
|
|
tr_peerIo * pio = peers[i];
|
|
peers[i] = peers[n-1];
|
|
peers[n-1] = pio;
|
|
--n;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
tr_bandwidthAllocate (tr_bandwidth * b,
|
|
tr_direction dir,
|
|
unsigned int period_msec)
|
|
{
|
|
int i, peerCount;
|
|
tr_ptrArray tmp = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray low = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray high = TR_PTR_ARRAY_INIT;
|
|
tr_ptrArray normal = TR_PTR_ARRAY_INIT;
|
|
struct tr_peerIo ** peers;
|
|
|
|
/* allocateBandwidth () is a helper function with two purposes:
|
|
* 1. allocate bandwidth to b and its subtree
|
|
* 2. accumulate an array of all the peerIos from b and its subtree. */
|
|
allocateBandwidth (b, TR_PRI_LOW, dir, period_msec, &tmp);
|
|
peers = (struct tr_peerIo**) tr_ptrArrayBase (&tmp);
|
|
peerCount = tr_ptrArraySize (&tmp);
|
|
|
|
for (i=0; i<peerCount; ++i)
|
|
{
|
|
tr_peerIo * io = peers[i];
|
|
tr_peerIoRef (io);
|
|
|
|
tr_peerIoFlushOutgoingProtocolMsgs (io);
|
|
|
|
switch (io->priority)
|
|
{
|
|
case TR_PRI_HIGH: tr_ptrArrayAppend (&high, io); /* fall through */
|
|
case TR_PRI_NORMAL: tr_ptrArrayAppend (&normal, io); /* fall through */
|
|
default: tr_ptrArrayAppend (&low, io);
|
|
}
|
|
}
|
|
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
phaseOne (&high, dir);
|
|
phaseOne (&normal, dir);
|
|
phaseOne (&low, dir);
|
|
|
|
/* Second phase of IO. To help us scale in high bandwidth situations,
|
|
* enable on-demand IO for peers with bandwidth left to burn.
|
|
* This on-demand IO is enabled until (1) the peer runs out of bandwidth,
|
|
* or (2) the next tr_bandwidthAllocate () call, when we start over again. */
|
|
for (i=0; i<peerCount; ++i)
|
|
tr_peerIoSetEnabled (peers[i], dir, tr_peerIoHasBandwidthLeft (peers[i], dir));
|
|
|
|
for (i=0; i<peerCount; ++i)
|
|
tr_peerIoUnref (peers[i]);
|
|
|
|
/* cleanup */
|
|
tr_ptrArrayDestruct (&normal, NULL);
|
|
tr_ptrArrayDestruct (&high, NULL);
|
|
tr_ptrArrayDestruct (&low, NULL);
|
|
tr_ptrArrayDestruct (&tmp, NULL);
|
|
}
|
|
|
|
void
|
|
tr_bandwidthSetPeer (tr_bandwidth * b, tr_peerIo * peer)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
assert ((peer == NULL) || tr_isPeerIo (peer));
|
|
|
|
b->peer = peer;
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static unsigned int
|
|
bandwidthClamp (const tr_bandwidth * b,
|
|
uint64_t now,
|
|
tr_direction dir,
|
|
unsigned int byteCount)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
assert (tr_isDirection (dir));
|
|
|
|
if (b)
|
|
{
|
|
if (b->band[dir].isLimited)
|
|
{
|
|
byteCount = MIN (byteCount, b->band[dir].bytesLeft);
|
|
|
|
/* if we're getting close to exceeding the speed limit,
|
|
* clamp down harder on the bytes available */
|
|
if (byteCount > 0)
|
|
{
|
|
double current;
|
|
double desired;
|
|
double r;
|
|
|
|
if (now == 0)
|
|
now = tr_time_msec ();
|
|
|
|
current = tr_bandwidthGetRawSpeed_Bps (b, now, TR_DOWN);
|
|
desired = tr_bandwidthGetDesiredSpeed_Bps (b, TR_DOWN);
|
|
r = desired >= 1 ? current / desired : 0;
|
|
|
|
if (r > 1.0) byteCount = 0;
|
|
else if (r > 0.9) byteCount *= 0.8;
|
|
else if (r > 0.8) byteCount *= 0.9;
|
|
}
|
|
}
|
|
|
|
if (b->parent && b->band[dir].honorParentLimits && (byteCount > 0))
|
|
byteCount = bandwidthClamp (b->parent, now, dir, byteCount);
|
|
}
|
|
|
|
return byteCount;
|
|
}
|
|
unsigned int
|
|
tr_bandwidthClamp (const tr_bandwidth * b,
|
|
tr_direction dir,
|
|
unsigned int byteCount)
|
|
{
|
|
return bandwidthClamp (b, 0, dir, byteCount);
|
|
}
|
|
|
|
|
|
unsigned int
|
|
tr_bandwidthGetRawSpeed_Bps (const tr_bandwidth * b, const uint64_t now, const tr_direction dir)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
assert (tr_isDirection (dir));
|
|
|
|
return getSpeed_Bps (&b->band[dir].raw, HISTORY_MSEC, now);
|
|
}
|
|
|
|
unsigned int
|
|
tr_bandwidthGetPieceSpeed_Bps (const tr_bandwidth * b, const uint64_t now, const tr_direction dir)
|
|
{
|
|
assert (tr_isBandwidth (b));
|
|
assert (tr_isDirection (dir));
|
|
|
|
return getSpeed_Bps (&b->band[dir].piece, HISTORY_MSEC, now);
|
|
}
|
|
|
|
void
|
|
tr_bandwidthUsed (tr_bandwidth * b,
|
|
tr_direction dir,
|
|
size_t byteCount,
|
|
bool isPieceData,
|
|
uint64_t now)
|
|
{
|
|
struct tr_band * band;
|
|
|
|
assert (tr_isBandwidth (b));
|
|
assert (tr_isDirection (dir));
|
|
|
|
band = &b->band[dir];
|
|
|
|
if (band->isLimited && isPieceData)
|
|
band->bytesLeft -= MIN (band->bytesLeft, byteCount);
|
|
|
|
#ifdef DEBUG_DIRECTION
|
|
if ((dir == DEBUG_DIRECTION) && (band->isLimited))
|
|
fprintf (stderr, "%p consumed %5zu bytes of %5s data... was %6zu, now %6zu left\n",
|
|
b, byteCount, (isPieceData?"piece":"raw"), oldBytesLeft, band->bytesLeft);
|
|
#endif
|
|
|
|
bytesUsed (now, &band->raw, byteCount);
|
|
|
|
if (isPieceData)
|
|
bytesUsed (now, &band->piece, byteCount);
|
|
|
|
if (b->parent != NULL)
|
|
tr_bandwidthUsed (b->parent, dir, byteCount, isPieceData, now);
|
|
}
|