1
0
Fork 0
mirror of https://github.com/transmission/transmission synced 2025-01-03 05:25:52 +00:00
transmission/libtransmission/tr-lpd.cc

685 lines
22 KiB
C++

// Except where noted, This file Copyright © Johannes Lieder.
// It may be used under the MIT (SPDX: MIT) license.
// License text can be found in the licenses/ folder.
#include <algorithm>
#include <array>
#include <chrono>
#include <cstddef> // std::byte
#include <cstdint> // uint16_t
#include <cstring>
#include <ctime> // time_t
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <type_traits>
#include <vector>
#ifdef _WIN32
#include <ws2tcpip.h>
#else
#include <netinet/in.h> /* sockaddr_in */
#include <sys/socket.h> /* socket(), bind() */
#endif
#include <event2/event.h>
#include <fmt/core.h>
#include "libtransmission/transmission.h"
#include "libtransmission/crypto-utils.h" // for tr_rand_obj()
#include "libtransmission/log.h"
#include "libtransmission/net.h"
#include "libtransmission/timer.h"
#include "libtransmission/tr-assert.h"
#include "libtransmission/tr-lpd.h"
#include "libtransmission/utils.h" // for tr_net_init()
#include "libtransmission/utils-ev.h" // for tr_net_init()
using namespace std::literals;
// Code in this namespace Copyright © Mnemosyne LLC.
// It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), MIT (SPDX: MIT),
// or any future license endorsed by Mnemosyne LLC.
// License text can be found in the licenses/ folder.
namespace
{
using ipp_t = std::underlying_type_t<tr_address_type>;
// opaque value, allowing the sending client to filter out its
// own announces if it receives them via multicast loopback
auto makeCookie()
{
static auto constexpr Pool = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"sv;
auto buf = tr_rand_obj<std::array<char, 12>>();
for (auto& ch : buf)
{
ch = Pool[static_cast<unsigned char>(ch) % std::size(Pool)];
}
return std::string{ std::data(buf), std::size(buf) };
}
auto constexpr McastSockAddr = std::array{ "239.192.152.143:6771"sv, "[ff15::efc0:988f]:6771"sv };
static_assert(std::size(McastSockAddr) == NUM_TR_AF_INET_TYPES);
/*
* A LSD announce is formatted as follows:
*
* ```
* BT-SEARCH * HTTP/1.1\r\n
* Host: <host>\r\n
* Port: <port>\r\n
* Infohash: <ihash>\r\n
* cookie: <cookie (optional)>\r\n
* \r\n
* \r\n
* ```
*
* An announce may contain multiple, consecutive Infohash headers
* to announce the participation in more than one torrent. This
* may not be supported by older implementations. When sending
* multiple infohashes the packet length should not exceed 1400
* bytes to avoid MTU/fragmentation problems.
*/
std::string makeAnnounceMsg(
tr_address_type ip_protocol,
std::string_view cookie,
tr_port port,
std::vector<std::string_view> const& info_hash_strings)
{
TR_ASSERT(tr_address::is_valid(ip_protocol));
if (!tr_address::is_valid(ip_protocol))
{
return {};
}
auto ret = fmt::format(
"BT-SEARCH * HTTP/1.1\r\n"
"Host: {:s}\r\n"
"Port: {:d}\r\n",
McastSockAddr[ip_protocol],
port.host());
for (auto const& info_hash : info_hash_strings)
{
ret += fmt::format("Infohash: {:s}\r\n", tr_strupper(info_hash));
}
if (!std::empty(cookie))
{
ret += fmt::format("cookie: {:s}\r\n", cookie);
}
return ret + "\r\n\r\n";
}
struct ParsedAnnounce
{
int major;
int minor;
tr_port port;
std::vector<std::string_view> info_hash_strings;
std::string_view cookie;
};
std::optional<ParsedAnnounce> parseAnnounceMsg(std::string_view announce)
{
static auto constexpr CrLf = "\r\n"sv;
auto ret = ParsedAnnounce{};
// get major, minor
auto key = "BT-SEARCH * HTTP/"sv;
if (auto const pos = announce.find(key); pos != std::string_view::npos)
{
// parse `${major}.${minor}`
auto walk = announce.substr(pos + std::size(key));
if (auto const major = tr_num_parse<int>(walk, &walk); major && tr_strv_starts_with(walk, '.'))
{
ret.major = *major;
}
else
{
return {};
}
walk.remove_prefix(1); // the '.' between major and minor
if (auto const minor = tr_num_parse<int>(walk, &walk); minor && tr_strv_starts_with(walk, CrLf))
{
ret.minor = *minor;
}
else
{
return {};
}
}
key = "Port: "sv;
if (auto const pos = announce.find(key); pos != std::string_view::npos)
{
auto walk = announce.substr(pos + std::size(key));
if (auto const port = tr_num_parse<uint16_t>(walk, &walk); port && tr_strv_starts_with(walk, CrLf))
{
ret.port = tr_port::from_host(*port);
}
else
{
return {};
}
}
key = "cookie: "sv;
if (auto const pos = announce.find(key); pos != std::string_view::npos)
{
auto walk = announce.substr(pos + std::size(key));
if (auto const end = walk.find(CrLf); end != std::string_view::npos)
{
ret.cookie = walk.substr(0, end);
}
else
{
return {};
}
}
key = "Infohash: "sv;
for (;;)
{
if (auto const pos = announce.find(key); pos != std::string_view::npos)
{
announce.remove_prefix(pos + std::size(key));
}
else
{
break;
}
if (auto const end = announce.find(CrLf); end != std::string_view::npos)
{
ret.info_hash_strings.push_back(announce.substr(0, end));
announce.remove_prefix(end + std::size(CrLf));
}
else
{
return {};
}
}
return ret;
}
} // namespace
class tr_lpd_impl final : public tr_lpd
{
public:
tr_lpd_impl(Mediator& mediator, struct event_base* event_base)
: mediator_{ mediator }
, announce_timer_{ mediator.timerMaker().create([this]() { announceUpkeep(); }) }
, dos_timer_{ mediator.timerMaker().create([this]() { dosUpkeep(); }) }
{
if (!init(event_base))
{
return;
}
announce_timer_->start_repeating(AnnounceInterval);
announceUpkeep();
dos_timer_->start_repeating(DosInterval);
dosUpkeep();
}
tr_lpd_impl(tr_lpd_impl&&) = delete;
tr_lpd_impl(tr_lpd_impl const&) = delete;
tr_lpd_impl& operator=(tr_lpd_impl&&) = delete;
tr_lpd_impl& operator=(tr_lpd_impl const&) = delete;
~tr_lpd_impl() override
{
for (auto& event : events_)
{
event.reset();
}
for (auto const sock : mcast_sockets_)
{
if (sock != TR_BAD_SOCKET)
{
tr_net_close_socket(sock);
}
}
tr_logAddTrace("Done uninitialising Local Peer Discovery");
}
private:
bool init(struct event_base* event_base)
{
ipp_t n_success = NUM_TR_AF_INET_TYPES;
if (!initImpl<TR_AF_INET>(event_base))
{
auto const err = sockerrno;
tr_net_close_socket(mcast_sockets_[TR_AF_INET]);
mcast_sockets_[TR_AF_INET] = TR_BAD_SOCKET;
tr_logAddWarn(fmt::format(
_("Couldn't initialize {ip_protocol} LPD: {error} ({error_code})"),
fmt::arg("ip_protocol", tr_ip_protocol_to_sv(TR_AF_INET)),
fmt::arg("error", tr_strerror(err)),
fmt::arg("error_code", err)));
--n_success;
}
if (!initImpl<TR_AF_INET6>(event_base))
{
auto const err = sockerrno;
tr_net_close_socket(mcast_sockets_[TR_AF_INET6]);
mcast_sockets_[TR_AF_INET6] = TR_BAD_SOCKET;
tr_logAddWarn(fmt::format(
_("Couldn't initialize {ip_protocol} LPD: {error} ({error_code})"),
fmt::arg("ip_protocol", tr_ip_protocol_to_sv(TR_AF_INET6)),
fmt::arg("error", tr_strerror(err)),
fmt::arg("error_code", err)));
--n_success;
}
return n_success != 0U;
}
/**
* @brief Initializes Local Peer Discovery for this node
*
* For the most part, this means setting up an appropriately configured multicast socket
* and event-based message handling.
*/
template<tr_address_type ip_protocol>
bool initImpl(struct event_base* event_base)
{
auto const opt_on = 1;
auto& sock = mcast_sockets_[ip_protocol];
static_assert(AnnounceScope > 0);
static_assert(tr_address::is_valid(ip_protocol));
tr_logAddDebug(fmt::format("Initialising {} Local Peer Discovery", tr_ip_protocol_to_sv(ip_protocol)));
// setup datagram socket
sock = socket(tr_ip_protocol_to_af(ip_protocol), SOCK_DGRAM, 0);
if (sock == TR_BAD_SOCKET)
{
return false;
}
if (evutil_make_socket_nonblocking(sock) == -1)
{
return false;
}
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast<char const*>(&opt_on), sizeof(opt_on)) == -1)
{
return false;
}
#if HAVE_SO_REUSEPORT
if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, reinterpret_cast<char const*>(&opt_on), sizeof(opt_on)) == -1)
{
return false;
}
#endif
if constexpr (ip_protocol == TR_AF_INET6)
{
// must be done before binding on Linux
if (evutil_make_listen_socket_ipv6only(sock) == -1)
{
return false;
}
}
auto const mcast_sockaddr = tr_socket_address::from_string(McastSockAddr[ip_protocol]);
TR_ASSERT(mcast_sockaddr);
auto const [mcast_ss, mcast_sslen] = mcast_sockaddr->to_sockaddr();
auto const [bind_ss, bind_sslen] = tr_socket_address::to_sockaddr(tr_address::any(ip_protocol), mcast_sockaddr->port());
if (bind(sock, reinterpret_cast<sockaddr const*>(&bind_ss), bind_sslen) == -1)
{
return false;
}
if constexpr (ip_protocol == TR_AF_INET)
{
std::memcpy(&mcast_addr_, &mcast_ss, mcast_sslen);
// we want to join that LPD multicast group
struct ip_mreq mcast_req = {};
mcast_req.imr_multiaddr = mcast_addr_.sin_addr;
mcast_req.imr_interface = mediator_.bind_address(ip_protocol).addr.addr4;
if (setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, reinterpret_cast<char const*>(&mcast_req), sizeof(mcast_req)) ==
-1)
{
return false;
}
// configure outbound multicast TTL
if (setsockopt(
sock,
IPPROTO_IP,
IP_MULTICAST_TTL,
reinterpret_cast<char const*>(&AnnounceScope),
sizeof(AnnounceScope)) == -1)
{
return false;
}
if (setsockopt(
sock,
IPPROTO_IP,
IP_MULTICAST_IF,
reinterpret_cast<char const*>(&mcast_req.imr_interface),
sizeof(mcast_req.imr_interface)) == -1)
{
return false;
}
// needed to announce to BT clients on the same interface
if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, reinterpret_cast<char const*>(&opt_on), sizeof(opt_on)) == -1)
{
return false;
}
}
else // TR_AF_INET6
{
std::memcpy(&mcast6_addr_, &mcast_ss, mcast_sslen);
// we want to join that LPD multicast group
struct ipv6_mreq mcast_req = {};
mcast_req.ipv6mr_multiaddr = mcast6_addr_.sin6_addr;
mcast_req.ipv6mr_interface = mediator_.bind_address(ip_protocol).to_interface_index().value_or(0);
if (setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, reinterpret_cast<char const*>(&mcast_req), sizeof(mcast_req)) ==
-1)
{
return false;
}
// configure outbound multicast TTL
if (setsockopt(
sock,
IPPROTO_IPV6,
IPV6_MULTICAST_HOPS,
reinterpret_cast<char const*>(&AnnounceScope),
sizeof(AnnounceScope)) == -1)
{
return false;
}
if (setsockopt(
sock,
IPPROTO_IPV6,
IPV6_MULTICAST_IF,
reinterpret_cast<char const*>(&mcast_req.ipv6mr_interface),
sizeof(mcast_req.ipv6mr_interface)) == -1)
{
return false;
}
// needed to announce to BT clients on the same interface
if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, reinterpret_cast<char const*>(&opt_on), sizeof(opt_on)) ==
-1)
{
return false;
}
}
events_[ip_protocol].reset(event_new(event_base, sock, EV_READ | EV_PERSIST, event_callback<ip_protocol>, this));
event_add(events_[ip_protocol].get(), nullptr);
tr_logAddDebug(fmt::format("{} Local Peer Discovery initialised", tr_ip_protocol_to_sv(ip_protocol)));
return true;
}
/**
* @brief Processing of timeout notifications and incoming data on the socket
* @note maximum rate of read events is limited according to @a lpd_maxAnnounceCap
* @see DoS */
template<tr_address_type ip_protocol>
static void event_callback(evutil_socket_t /*s*/, short type, void* vself)
{
if ((type & EV_READ) != 0)
{
static_cast<tr_lpd_impl*>(vself)->onCanRead(ip_protocol);
}
}
void onCanRead(tr_address_type ip_protocol)
{
TR_ASSERT(tr_address::is_valid(ip_protocol));
if (!tr_address::is_valid(ip_protocol))
{
return;
}
if (!mediator_.allowsLPD())
{
return;
}
// process announcement from foreign peer
struct sockaddr_storage foreign_addr = {};
auto addr_len = socklen_t{ sizeof(foreign_addr) };
auto foreign_msg = std::array<char, MaxDatagramLength>{};
auto const res = recvfrom(
mcast_sockets_[ip_protocol],
std::data(foreign_msg),
MaxDatagramLength,
0,
reinterpret_cast<sockaddr*>(&foreign_addr),
&addr_len);
// If we couldn't read it, discard it
if (res < 1)
{
return;
}
TR_ASSERT(tr_af_to_ip_protocol(foreign_addr.ss_family) == ip_protocol);
// If it doesn't look like a BEP14 message, discard it
auto const msg = std::string_view{ std::data(foreign_msg), static_cast<size_t>(res) };
if (static auto constexpr SearchKey = "BT-SEARCH * HTTP/"sv; msg.find(SearchKey) == std::string_view::npos)
{
return;
}
// If we're receiving too many, discard it
if (++messages_received_since_upkeep_ > MaxIncomingPerUpkeep)
{
return;
}
// If it's an invalid message or the wrong protocol version, discard it.
// Note this comes *after* incrementing the count since there is some
// small CPU overhead in parsing, so don't do it for *every* message
auto const parsed = parseAnnounceMsg(msg);
if (!parsed || parsed->major != 1 || parsed->minor < 1 || parsed->cookie == cookie_)
{
tr_logAddTrace("Discarded invalid multicast message");
return;
}
auto peer_sockaddr = tr_socket_address::from_sockaddr(reinterpret_cast<sockaddr*>(&foreign_addr));
if (!peer_sockaddr)
{
return;
}
for (auto const& hash_string : parsed->info_hash_strings)
{
if (!mediator_.onPeerFound(hash_string, peer_sockaddr->address(), parsed->port))
{
tr_logAddDebug(fmt::format("Cannot serve torrent #{:s}", hash_string));
}
}
}
void announceUpkeep()
{
if (!mediator_.allowsLPD())
{
return;
}
auto torrents = mediator_.torrents();
// remove torrents that don't need to be announced
auto const now = tr_time();
auto const needs_announce = [&now](auto& info)
{
return info.allows_lpd && (info.activity == TR_STATUS_DOWNLOAD || info.activity == TR_STATUS_SEED) &&
info.announce_after < now;
};
torrents.erase(
std::remove_if(std::begin(torrents), std::end(torrents), std::not_fn(needs_announce)),
std::end(torrents));
if (std::empty(torrents))
{
return;
}
// prioritize the remaining torrents
static auto constexpr TorrentComparator = [](auto const& a, auto const& b)
{
if (a.activity != b.activity)
{
return a.activity < b.activity;
}
if (a.announce_after != b.announce_after)
{
return a.announce_after < b.announce_after;
}
return false;
};
std::sort(std::begin(torrents), std::end(torrents), TorrentComparator);
auto const next_announce_after = now + TorrentAnnounceIntervalSec;
for (ipp_t ipp = 0; ipp < NUM_TR_AF_INET_TYPES; ++ipp)
{
auto const ip_protocol = static_cast<tr_address_type>(ipp);
// cram in as many as will fit in a message
auto const baseline_size = std::size(makeAnnounceMsg(ip_protocol, cookie_, mediator_.port(), {}));
auto const size_with_one = std::size(
makeAnnounceMsg(ip_protocol, cookie_, mediator_.port(), { torrents.front().info_hash_str }));
auto const size_per_hash = size_with_one - baseline_size;
auto const max_torrents_per_announce = (MaxDatagramLength - baseline_size) / size_per_hash;
auto const torrents_this_announce = std::min(std::size(torrents), max_torrents_per_announce);
auto info_hash_strings = std::vector<std::string_view>{};
info_hash_strings.reserve(torrents_this_announce);
std::transform(
std::begin(torrents),
std::begin(torrents) + torrents_this_announce,
std::back_inserter(info_hash_strings),
[](auto const& tor) { return tor.info_hash_str; });
if (!sendAnnounce(static_cast<tr_address_type>(ipp), info_hash_strings))
{
continue;
}
for (auto const& info_hash_string : info_hash_strings)
{
mediator_.setNextAnnounceTime(info_hash_string, next_announce_after);
}
}
}
void dosUpkeep()
{
if (messages_received_since_upkeep_ > MaxIncomingPerUpkeep)
{
tr_logAddTrace(fmt::format(
"Dropped {} announces in the last interval (max. {} allowed)",
messages_received_since_upkeep_ - MaxIncomingPerUpkeep,
MaxIncomingPerUpkeep));
}
messages_received_since_upkeep_ = 0;
}
/**
* @brief Announce the given torrent on the local network
*
* @return Returns a success flag
*
* Send a query for torrent t out to the LPD multicast group (or the LAN, for that
* matter). A listening client on the same network might react by adding us to his
* peer pool for torrent t.
*/
bool sendAnnounce(tr_address_type ip_protocol, std::vector<std::string_view> const& info_hash_strings)
{
TR_ASSERT(tr_address::is_valid(ip_protocol));
if (!tr_address::is_valid(ip_protocol))
{
return false;
}
if (mcast_sockets_[ip_protocol] == TR_BAD_SOCKET)
{
return true;
}
auto const announce = makeAnnounceMsg(ip_protocol, cookie_, mediator_.port(), info_hash_strings);
TR_ASSERT(std::size(announce) <= MaxDatagramLength);
auto const res = sendto(
mcast_sockets_[ip_protocol],
std::data(announce),
std::size(announce),
0,
ip_protocol == TR_AF_INET ? reinterpret_cast<sockaddr const*>(&mcast_addr_) :
reinterpret_cast<sockaddr const*>(&mcast6_addr_),
ip_protocol == TR_AF_INET ? sizeof(mcast_addr_) : sizeof(mcast6_addr_));
return res == static_cast<int>(std::size(announce));
}
std::string const cookie_ = makeCookie();
Mediator& mediator_;
std::array<tr_socket_t, NUM_TR_AF_INET_TYPES> mcast_sockets_ = { TR_BAD_SOCKET, TR_BAD_SOCKET }; // multicast sockets
std::array<libtransmission::evhelpers::event_unique_ptr, NUM_TR_AF_INET_TYPES> events_;
static auto constexpr MaxDatagramLength = size_t{ 1400 };
sockaddr_in mcast_addr_ = {}; // initialized from the above constants in init()
sockaddr_in6 mcast6_addr_ = {}; // initialized from the above constants in init()
// BEP14: "To avoid causing multicast storms on large networks a
// client should send no more than 1 announce per minute."
static auto constexpr AnnounceInterval = 1min;
std::unique_ptr<libtransmission::Timer> announce_timer_;
// Flood Protection:
// To protect against message flooding, stop processing search messages
// after processing N per upkeep. If we hit that limit, we're either
// in a *very* crowded multicast group or a hostile host is sending us
// bogus data. Better to drop a few packets than get DoS'ed.
static auto constexpr DosInterval = 5s;
std::unique_ptr<libtransmission::Timer> dos_timer_;
static auto constexpr MaxIncomingPerSecond = 10;
static auto constexpr MaxIncomingPerUpkeep = std::chrono::duration_cast<std::chrono::seconds>(DosInterval).count() *
MaxIncomingPerSecond;
size_t messages_received_since_upkeep_ = 0U; // throw away messages after this number exceeds MaxIncomingPerUpkeep
static auto constexpr TorrentAnnounceIntervalSec = time_t{ 240U }; // how frequently to reannounce the same torrent
static auto constexpr TtlSameSubnet = 1;
static auto constexpr AnnounceScope = int{ TtlSameSubnet }; // the maximum scope for LPD datagrams
};
std::unique_ptr<tr_lpd> tr_lpd::create(Mediator& mediator, struct event_base* event_base)
{
return std::make_unique<tr_lpd_impl>(mediator, event_base);
}