365 lines
9.7 KiB
C++
365 lines
9.7 KiB
C++
// This file Copyright © 2008-2022 Mnemosyne LLC.
|
|
// It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only),
|
|
// or any future license endorsed by Mnemosyne LLC.
|
|
// License text can be found in the licenses/ folder.
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <cstring>
|
|
|
|
#include <fmt/core.h>
|
|
|
|
#include "transmission.h"
|
|
|
|
#include "bandwidth.h"
|
|
#include "crypto-utils.h" /* tr_rand_int_weak() */
|
|
#include "error.h"
|
|
#include "log.h"
|
|
#include "peer-io.h"
|
|
#include "platform.h"
|
|
#include "quark.h"
|
|
#include "session.h"
|
|
#include "tr-assert.h"
|
|
#include "utils.h"
|
|
#include "variant.h"
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
unsigned int Bandwidth::getSpeedBytesPerSecond(RateControl& r, unsigned int interval_msec, uint64_t now)
|
|
{
|
|
if (now == 0)
|
|
{
|
|
now = tr_time_msec();
|
|
}
|
|
|
|
if (now != r.cache_time_)
|
|
{
|
|
uint64_t bytes = 0;
|
|
uint64_t const cutoff = now - interval_msec;
|
|
|
|
for (int i = r.newest_; r.transfers_[i].date_ > cutoff;)
|
|
{
|
|
bytes += r.transfers_[i].size_;
|
|
|
|
if (--i == -1)
|
|
{
|
|
i = HistorySize - 1; /* circular history */
|
|
}
|
|
|
|
if (i == r.newest_)
|
|
{
|
|
break; /* we've come all the way around */
|
|
}
|
|
}
|
|
|
|
r.cache_val_ = unsigned(bytes * 1000U / interval_msec);
|
|
r.cache_time_ = now;
|
|
}
|
|
|
|
return r.cache_val_;
|
|
}
|
|
|
|
void Bandwidth::notifyBandwidthConsumedBytes(uint64_t const now, RateControl* r, size_t size)
|
|
{
|
|
if (r->transfers_[r->newest_].date_ + GranularityMSec >= now)
|
|
{
|
|
r->transfers_[r->newest_].size_ += size;
|
|
}
|
|
else
|
|
{
|
|
if (++r->newest_ == HistorySize)
|
|
{
|
|
r->newest_ = 0;
|
|
}
|
|
|
|
r->transfers_[r->newest_].date_ = now;
|
|
r->transfers_[r->newest_].size_ = size;
|
|
}
|
|
|
|
/* invalidate cache_val*/
|
|
r->cache_time_ = 0;
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
Bandwidth::Bandwidth(Bandwidth* parent)
|
|
{
|
|
this->setParent(parent);
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
static void remove_child(std::vector<Bandwidth*>& v, Bandwidth* remove_me)
|
|
{
|
|
auto it = std::find(std::begin(v), std::end(v), remove_me);
|
|
if (it == std::end(v))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// the list isn't sorted -- so instead of erase()ing `it`,
|
|
// do the cheaper option of overwriting it with the final item
|
|
*it = v.back();
|
|
v.resize(v.size() - 1);
|
|
}
|
|
|
|
void Bandwidth::setParent(Bandwidth* new_parent)
|
|
{
|
|
TR_ASSERT(this != new_parent);
|
|
|
|
if (this->parent_ != nullptr)
|
|
{
|
|
remove_child(this->parent_->children_, this);
|
|
this->parent_ = nullptr;
|
|
}
|
|
|
|
if (new_parent != nullptr)
|
|
{
|
|
#ifdef TR_ENABLE_ASSERTS
|
|
TR_ASSERT(new_parent->parent_ != this);
|
|
auto& children = new_parent->children_;
|
|
TR_ASSERT(std::find(std::begin(children), std::end(children), this) == std::end(children)); // not already there
|
|
#endif
|
|
|
|
new_parent->children_.push_back(this);
|
|
this->parent_ = new_parent;
|
|
}
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
void Bandwidth::allocateBandwidth(
|
|
tr_priority_t parent_priority,
|
|
tr_direction dir,
|
|
unsigned int period_msec,
|
|
std::vector<tr_peerIo*>& peer_pool)
|
|
{
|
|
tr_priority_t const priority = std::max(parent_priority, this->priority_);
|
|
|
|
/* set the available bandwidth */
|
|
if (this->band_[dir].is_limited_)
|
|
{
|
|
uint64_t const next_pulse_speed = this->band_[dir].desired_speed_bps_;
|
|
this->band_[dir].bytes_left_ = next_pulse_speed * period_msec / 1000U;
|
|
}
|
|
|
|
/* add this bandwidth's peer, if any, to the peer pool */
|
|
if (this->peer_ != nullptr)
|
|
{
|
|
this->peer_->priority = priority;
|
|
peer_pool.push_back(this->peer_);
|
|
}
|
|
|
|
// traverse & repeat for the subtree
|
|
for (auto* child : this->children_)
|
|
{
|
|
child->allocateBandwidth(priority, dir, period_msec, peer_pool);
|
|
}
|
|
}
|
|
|
|
void Bandwidth::phaseOne(std::vector<tr_peerIo*>& peerArray, tr_direction dir)
|
|
{
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
tr_logAddTrace(fmt::format("{} peers to go round-robin for {}", peerArray.size(), dir == TR_UP ? "upload" : "download"));
|
|
|
|
size_t n = peerArray.size();
|
|
while (n > 0)
|
|
{
|
|
int const i = tr_rand_int_weak(n); /* pick a peer at random */
|
|
|
|
/* value of 3000 bytes chosen so that when using uTP we'll send a full-size
|
|
* frame right away and leave enough buffered data for the next frame to go
|
|
* out in a timely manner. */
|
|
size_t const increment = 3000;
|
|
|
|
int const bytes_used = tr_peerIoFlush(peerArray[i], dir, increment);
|
|
|
|
tr_logAddTrace(fmt::format("peer #{} of {} used {} bytes in this pass", i, n, bytes_used));
|
|
|
|
if (bytes_used != int(increment))
|
|
{
|
|
/* peer is done writing for now; move it to the end of the list */
|
|
std::swap(peerArray[i], peerArray[n - 1]);
|
|
--n;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Bandwidth::allocate(tr_direction dir, unsigned int period_msec)
|
|
{
|
|
TR_ASSERT(tr_isDirection(dir));
|
|
|
|
auto high = std::vector<tr_peerIo*>{};
|
|
auto low = std::vector<tr_peerIo*>{};
|
|
auto normal = std::vector<tr_peerIo*>{};
|
|
auto tmp = std::vector<tr_peerIo*>{};
|
|
|
|
/* allocateBandwidth () is a helper function with two purposes:
|
|
* 1. allocate bandwidth to b and its subtree
|
|
* 2. accumulate an array of all the peerIos from b and its subtree. */
|
|
this->allocateBandwidth(TR_PRI_LOW, dir, period_msec, tmp);
|
|
|
|
for (auto* io : tmp)
|
|
{
|
|
tr_peerIoRef(io);
|
|
tr_peerIoFlushOutgoingProtocolMsgs(io);
|
|
|
|
switch (io->priority)
|
|
{
|
|
case TR_PRI_HIGH:
|
|
high.push_back(io);
|
|
[[fallthrough]];
|
|
|
|
case TR_PRI_NORMAL:
|
|
normal.push_back(io);
|
|
[[fallthrough]];
|
|
|
|
default:
|
|
low.push_back(io);
|
|
}
|
|
}
|
|
|
|
/* First phase of IO. Tries to distribute bandwidth fairly to keep faster
|
|
* peers from starving the others. Loop through the peers, giving each a
|
|
* small chunk of bandwidth. Keep looping until we run out of bandwidth
|
|
* and/or peers that can use it */
|
|
phaseOne(high, dir);
|
|
phaseOne(normal, dir);
|
|
phaseOne(low, dir);
|
|
|
|
/* Second phase of IO. To help us scale in high bandwidth situations,
|
|
* enable on-demand IO for peers with bandwidth left to burn.
|
|
* This on-demand IO is enabled until (1) the peer runs out of bandwidth,
|
|
* or (2) the next Bandwidth::allocate () call, when we start over again. */
|
|
for (auto* io : tmp)
|
|
{
|
|
tr_peerIoSetEnabled(io, dir, tr_peerIoHasBandwidthLeft(io, dir));
|
|
}
|
|
|
|
for (auto* io : tmp)
|
|
{
|
|
tr_peerIoUnref(io);
|
|
}
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
unsigned int Bandwidth::clamp(uint64_t now, tr_direction dir, unsigned int byte_count) const
|
|
{
|
|
TR_ASSERT(tr_isDirection(dir));
|
|
|
|
if (this->band_[dir].is_limited_)
|
|
{
|
|
byte_count = std::min(byte_count, this->band_[dir].bytes_left_);
|
|
|
|
/* if we're getting close to exceeding the speed limit,
|
|
* clamp down harder on the bytes available */
|
|
if (byte_count > 0)
|
|
{
|
|
if (now == 0)
|
|
{
|
|
now = tr_time_msec();
|
|
}
|
|
|
|
auto const current = this->getRawSpeedBytesPerSecond(now, TR_DOWN);
|
|
auto const desired = this->getDesiredSpeedBytesPerSecond(TR_DOWN);
|
|
auto const r = desired >= 1 ? double(current) / desired : 0;
|
|
|
|
if (r > 1.0)
|
|
{
|
|
byte_count = 0;
|
|
}
|
|
else if (r > 0.9)
|
|
{
|
|
byte_count = static_cast<unsigned int>(byte_count * 0.8);
|
|
}
|
|
else if (r > 0.8)
|
|
{
|
|
byte_count = static_cast<unsigned int>(byte_count * 0.9);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (this->parent_ != nullptr && this->band_[dir].honor_parent_limits_ && byte_count > 0)
|
|
{
|
|
byte_count = this->parent_->clamp(now, dir, byte_count);
|
|
}
|
|
|
|
return byte_count;
|
|
}
|
|
|
|
void Bandwidth::notifyBandwidthConsumed(tr_direction dir, size_t byte_count, bool is_piece_data, uint64_t now)
|
|
{
|
|
TR_ASSERT(tr_isDirection(dir));
|
|
|
|
Band* band = &this->band_[dir];
|
|
|
|
if (band->is_limited_ && is_piece_data)
|
|
{
|
|
band->bytes_left_ -= std::min(size_t{ band->bytes_left_ }, byte_count);
|
|
}
|
|
|
|
#ifdef DEBUG_DIRECTION
|
|
|
|
if (dir == DEBUG_DIRECTION && band_->isLimited)
|
|
{
|
|
fprintf(
|
|
stderr,
|
|
"%p consumed %5zu bytes of %5s data... was %6zu, now %6zu left\n",
|
|
this,
|
|
byte_count,
|
|
is_piece_data ? "piece" : "raw",
|
|
oldBytesLeft,
|
|
band_->bytesLeft);
|
|
}
|
|
|
|
#endif
|
|
|
|
notifyBandwidthConsumedBytes(now, &band->raw_, byte_count);
|
|
|
|
if (is_piece_data)
|
|
{
|
|
notifyBandwidthConsumedBytes(now, &band->piece_, byte_count);
|
|
}
|
|
|
|
if (this->parent_ != nullptr)
|
|
{
|
|
this->parent_->notifyBandwidthConsumed(dir, byte_count, is_piece_data, now);
|
|
}
|
|
}
|
|
|
|
/***
|
|
****
|
|
***/
|
|
|
|
tr_bandwidth_limits Bandwidth::getLimits() const
|
|
{
|
|
tr_bandwidth_limits limits;
|
|
limits.up_limit_KBps = tr_toSpeedKBps(this->getDesiredSpeedBytesPerSecond(TR_UP));
|
|
limits.down_limit_KBps = tr_toSpeedKBps(this->getDesiredSpeedBytesPerSecond(TR_DOWN));
|
|
limits.up_limited = this->isLimited(TR_UP);
|
|
limits.down_limited = this->isLimited(TR_DOWN);
|
|
return limits;
|
|
}
|
|
|
|
void Bandwidth::setLimits(tr_bandwidth_limits const* limits)
|
|
{
|
|
this->setDesiredSpeedBytesPerSecond(TR_UP, tr_toSpeedBytes(limits->up_limit_KBps));
|
|
this->setDesiredSpeedBytesPerSecond(TR_DOWN, tr_toSpeedBytes(limits->down_limit_KBps));
|
|
this->setLimited(TR_UP, limits->up_limited);
|
|
this->setLimited(TR_DOWN, limits->down_limited);
|
|
}
|