1
0
Fork 0
mirror of https://github.com/transmission/transmission synced 2024-12-30 19:46:56 +00:00
transmission/libtransmission/peer-msgs.cc
2023-02-11 14:49:42 -06:00

2306 lines
69 KiB
C++

// This file Copyright © 2007-2023 Mnemosyne LLC.
// It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only),
// or any future license endorsed by Mnemosyne LLC.
// License text can be found in the licenses/ folder.
#include <algorithm>
#include <array>
#include <cerrno>
#include <cstring>
#include <ctime>
#include <iterator>
#include <map>
#include <memory> // std::unique_ptr
#include <optional>
#include <queue>
#include <utility>
#include <vector>
#include <event2/bufferevent.h>
#include <fmt/format.h>
#include "transmission.h"
#include "cache.h"
#include "completion.h"
#include "crypto-utils.h"
#include "file.h"
#include "log.h"
#include "peer-io.h"
#include "peer-mgr.h"
#include "peer-msgs.h"
#include "quark.h"
#include "session.h"
#include "timer.h"
#include "torrent-magnet.h"
#include "torrent.h"
#include "tr-assert.h"
#include "tr-buffer.h"
#include "tr-dht.h"
#include "utils.h"
#include "variant.h"
#include "version.h"
#ifndef EBADMSG
#define EBADMSG EINVAL
#endif
using namespace std::literals;
namespace
{
// these values are hardcoded by various BEPs as noted
namespace BtPeerMsgs
{
// http://bittorrent.org/beps/bep_0003.html#peer-messages
auto constexpr Choke = uint8_t{ 0 };
auto constexpr Unchoke = uint8_t{ 1 };
auto constexpr Interested = uint8_t{ 2 };
auto constexpr NotInterested = uint8_t{ 3 };
auto constexpr Have = uint8_t{ 4 };
auto constexpr Bitfield = uint8_t{ 5 };
auto constexpr Request = uint8_t{ 6 };
auto constexpr Piece = uint8_t{ 7 };
auto constexpr Cancel = uint8_t{ 8 };
// http://bittorrent.org/beps/bep_0005.html
auto constexpr Port = uint8_t{ 9 };
// https://www.bittorrent.org/beps/bep_0006.html
auto constexpr FextSuggest = uint8_t{ 13 };
auto constexpr FextHaveAll = uint8_t{ 14 };
auto constexpr FextHaveNone = uint8_t{ 15 };
auto constexpr FextReject = uint8_t{ 16 };
auto constexpr FextAllowedFast = uint8_t{ 17 };
// http://bittorrent.org/beps/bep_0010.html
// see also LtepMessageIds below
auto constexpr Ltep = uint8_t{ 20 };
} // namespace BtPeerMsgs
namespace LtepMessages
{
// http://bittorrent.org/beps/bep_0010.html
auto constexpr Handshake = uint8_t{ 0 };
} // namespace LtepMessages
// http://bittorrent.org/beps/bep_0010.html
// Client-defined extension message IDs that we tell peers about
// in the LTEP handshake and will respond to when sent in an LTEP
// message.
enum LtepMessageIds
{
// we support peer exchange (bep 11)
// https://www.bittorrent.org/beps/bep_0011.html
UT_PEX_ID = 1,
// we support sending metadata files (bep 9)
// https://www.bittorrent.org/beps/bep_0009.html
// see also MetadataMsgType below
UT_METADATA_ID = 3,
};
// http://bittorrent.org/beps/bep_0009.html
namespace MetadataMsgType
{
auto constexpr Request = int{ 0 };
auto constexpr Data = int{ 1 };
auto constexpr Reject = int{ 2 };
} // namespace MetadataMsgType
auto constexpr MinChokePeriodSec = int{ 10 };
// idle seconds before we send a keepalive
auto constexpr KeepaliveIntervalSecs = int{ 100 };
auto constexpr MetadataReqQ = int{ 64 };
auto constexpr ReqQ = int{ 512 };
// used in lowering the outMessages queue period
auto constexpr ImmediatePriorityIntervalSecs = int{ 0 };
auto constexpr HighPriorityIntervalSecs = int{ 2 };
auto constexpr LowPriorityIntervalSecs = int{ 10 };
// how many blocks to keep prefetched per peer
auto constexpr PrefetchMax = size_t{ 18 };
// when we're making requests from another peer,
// batch them together to send enough requests to
// meet our bandwidth goals for the next N seconds
auto constexpr RequestBufSecs = int{ 10 };
// ---
auto constexpr MaxPexPeerCount = size_t{ 50 };
// ---
enum class AwaitingBt
{
Length,
Id,
Message,
Piece
};
enum class EncryptionPreference
{
Unknown,
Yes,
No
};
// ---
struct peer_request
{
uint32_t index = 0;
uint32_t offset = 0;
uint32_t length = 0;
[[nodiscard]] auto constexpr operator==(peer_request const& that) const noexcept
{
return this->index == that.index && this->offset == that.offset && this->length == that.length;
}
};
peer_request blockToReq(tr_torrent const* tor, tr_block_index_t block)
{
auto const loc = tor->blockLoc(block);
return peer_request{ loc.piece, loc.piece_offset, tor->blockSize(block) };
}
// ---
/* this is raw, unchanged data from the peer regarding
* the current message that it's sending us. */
struct tr_incoming
{
uint8_t id = 0; // the protocol message, e.g. BtPeerMsgs::Piece
uint32_t length = 0; // the full message payload length. Includes the +1 for id length
std::optional<peer_request> block_req; // metadata for incoming blocks
std::map<tr_block_index_t, std::unique_ptr<std::vector<uint8_t>>> block_buf; // piece data for incoming blocks
};
class tr_peerMsgsImpl;
// TODO: make these to be member functions
ReadState canRead(tr_peerIo* io, void* vmsgs, size_t* piece);
void cancelAllRequestsToClient(tr_peerMsgsImpl* msgs);
void didWrite(tr_peerIo* io, size_t bytes_written, bool was_piece_data, void* vmsgs);
void gotError(tr_peerIo* io, tr_error const& err, void* vmsgs);
void peerPulse(void* vmsgs);
void protocolSendCancel(tr_peerMsgsImpl* msgs, struct peer_request const& req);
void protocolSendChoke(tr_peerMsgsImpl* msgs, bool choke);
void protocolSendHave(tr_peerMsgsImpl* msgs, tr_piece_index_t index);
void protocolSendPort(tr_peerMsgsImpl* msgs, tr_port port);
void sendInterest(tr_peerMsgsImpl* msgs, bool b);
void sendLtepHandshake(tr_peerMsgsImpl* msgs);
void tellPeerWhatWeHave(tr_peerMsgsImpl* msgs);
void updateDesiredRequestCount(tr_peerMsgsImpl* msgs);
#define myLogMacro(msgs, level, text) \
do \
{ \
if (tr_logLevelIsActive(level)) \
{ \
tr_logAddMessage( \
__FILE__, \
__LINE__, \
(level), \
fmt::format(FMT_STRING("{:s} [{:s}]: {:s}"), (msgs)->io->display_name(), (msgs)->client, text), \
(msgs)->torrent->name()); \
} \
} while (0)
#define logdbg(msgs, text) myLogMacro(msgs, TR_LOG_DEBUG, text)
#define logtrace(msgs, text) myLogMacro(msgs, TR_LOG_TRACE, text)
/**
* Low-level communication state information about a connected peer.
*
* This structure remembers the low-level protocol states that we're
* in with this peer, such as active requests, pex messages, and so on.
* Its fields are all private to peer-msgs.c.
*
* Data not directly involved with sending & receiving messages is
* stored in tr_peer, where it can be accessed by both peermsgs and
* the peer manager.
*
* @see struct peer_atom
* @see tr_peer
*/
class tr_peerMsgsImpl final : public tr_peerMsgs
{
public:
tr_peerMsgsImpl(
tr_torrent* torrent_in,
peer_atom* atom_in,
std::shared_ptr<tr_peerIo> io_in,
tr_peer_callback callback,
void* callback_data)
: tr_peerMsgs{ torrent_in, atom_in }
, outMessagesBatchPeriod{ LowPriorityIntervalSecs }
, torrent{ torrent_in }
, io{ std::move(io_in) }
, have_{ torrent_in->pieceCount() }
, callback_{ callback }
, callback_data_{ callback_data }
{
if (torrent->allowsPex())
{
pex_timer_ = session->timerMaker().create([this]() { sendPex(); });
pex_timer_->startRepeating(SendPexInterval);
}
if (io->supports_utp())
{
tr_peerMgrSetUtpSupported(torrent, io->address());
tr_peerMgrSetUtpFailed(torrent, io->address(), false);
}
if (io->supports_ltep())
{
sendLtepHandshake(this);
}
tellPeerWhatWeHave(this);
if (session->allowsDHT() && io->supports_dht())
{
// only send PORT over IPv6 iff IPv6 DHT is running (BEP-32).
if (auto const [addr, is_any] = session->publicAddress(TR_AF_INET6); !is_any)
{
protocolSendPort(this, session->udpPort());
}
}
io->set_callbacks(canRead, didWrite, gotError, this);
updateDesiredRequestCount(this);
}
tr_peerMsgsImpl(tr_peerMsgsImpl&&) = delete;
tr_peerMsgsImpl(tr_peerMsgsImpl const&) = delete;
tr_peerMsgsImpl& operator=(tr_peerMsgsImpl&&) = delete;
tr_peerMsgsImpl& operator=(tr_peerMsgsImpl const&) = delete;
~tr_peerMsgsImpl() override
{
set_active(TR_UP, false);
set_active(TR_DOWN, false);
if (this->io)
{
this->io->clear();
}
}
void dbgOutMessageLen() const
{
logtrace(this, fmt::format(FMT_STRING("outMessage size is now {:d}"), std::size(outMessages)));
}
void pokeBatchPeriod(int interval)
{
if (outMessagesBatchPeriod > interval)
{
outMessagesBatchPeriod = interval;
logtrace(this, fmt::format(FMT_STRING("lowering batch interval to {:d} seconds"), interval));
}
}
bool isTransferringPieces(uint64_t now, tr_direction dir, tr_bytes_per_second_t* setme_bytes_per_second) const override
{
auto const bytes_per_second = io->get_piece_speed_bytes_per_second(now, dir);
if (setme_bytes_per_second != nullptr)
{
*setme_bytes_per_second = bytes_per_second;
}
return bytes_per_second > 0;
}
[[nodiscard]] size_t activeReqCount(tr_direction dir) const noexcept override
{
switch (dir)
{
case TR_CLIENT_TO_PEER: // requests we sent
return tr_peerMgrCountActiveRequestsToPeer(torrent, this);
case TR_PEER_TO_CLIENT: // requests they sent
return std::size(peer_requested_);
default:
TR_ASSERT(0);
return {};
}
}
[[nodiscard]] bool is_peer_choked() const noexcept override
{
return peer_is_choked_;
}
[[nodiscard]] bool is_peer_interested() const noexcept override
{
return peer_is_interested_;
}
[[nodiscard]] bool is_client_choked() const noexcept override
{
return client_is_choked_;
}
[[nodiscard]] bool is_client_interested() const noexcept override
{
return client_is_interested_;
}
[[nodiscard]] bool is_utp_connection() const noexcept override
{
return io->is_utp();
}
[[nodiscard]] bool is_encrypted() const override
{
return io->is_encrypted();
}
[[nodiscard]] bool is_incoming_connection() const override
{
return io->is_incoming();
}
[[nodiscard]] tr_bandwidth& bandwidth() noexcept override
{
return io->bandwidth();
}
[[nodiscard]] bool is_active(tr_direction direction) const override
{
TR_ASSERT(tr_isDirection(direction));
auto const active = is_active_[direction];
TR_ASSERT(active == calculate_active(direction));
return active;
}
void update_active(tr_direction direction) override
{
TR_ASSERT(tr_isDirection(direction));
set_active(direction, calculate_active(direction));
}
[[nodiscard]] std::pair<tr_address, tr_port> socketAddress() const override
{
return io->socket_address();
}
[[nodiscard]] std::string display_name() const override
{
auto const [addr, port] = socketAddress();
return addr.display_name(port);
}
[[nodiscard]] tr_bitfield const& has() const noexcept override
{
return have_;
}
void onTorrentGotMetainfo() noexcept override
{
invalidatePercentDone();
}
void invalidatePercentDone()
{
updateInterest();
}
void cancel_block_request(tr_block_index_t block) override
{
protocolSendCancel(this, blockToReq(torrent, block));
}
void set_choke(bool peer_is_choked) override
{
time_t const now = tr_time();
time_t const fibrillation_time = now - MinChokePeriodSec;
if (chokeChangedAt > fibrillation_time)
{
// TODO logtrace(msgs, "Not changing choke to %d to avoid fibrillation", peer_is_choked);
}
else if (peer_is_choked_ != peer_is_choked)
{
peer_is_choked_ = peer_is_choked;
if (peer_is_choked_)
{
cancelAllRequestsToClient(this);
}
protocolSendChoke(this, peer_is_choked_);
chokeChangedAt = now;
update_active(TR_CLIENT_TO_PEER);
}
}
void pulse() override
{
peerPulse(this);
}
void on_piece_completed(tr_piece_index_t piece) override
{
protocolSendHave(this, piece);
// since we have more pieces now, we might not be interested in this peer
updateInterest();
}
void set_interested(bool interested) override
{
if (client_is_interested_ != interested)
{
client_is_interested_ = interested;
sendInterest(this, interested);
update_active(TR_PEER_TO_CLIENT);
}
}
void updateInterest()
{
// TODO -- might need to poke the mgr on startup
}
//
[[nodiscard]] bool isValidRequest(peer_request const& req) const
{
return tr_torrentReqIsValid(torrent, req.index, req.offset, req.length);
}
void requestBlocks(tr_block_span_t const* block_spans, size_t n_spans) override
{
TR_ASSERT(torrent->clientCanDownload());
TR_ASSERT(is_client_interested());
TR_ASSERT(!is_client_choked());
for (auto const *span = block_spans, *span_end = span + n_spans; span != span_end; ++span)
{
for (auto [block, block_end] = *span; block < block_end; ++block)
{
// Note that requests can't cross over a piece boundary.
// So if a piece isn't evenly divisible by the block size,
// we need to split our block request info per-piece chunks.
auto const byte_begin = torrent->blockLoc(block).byte;
auto const block_size = torrent->blockSize(block);
auto const byte_end = byte_begin + block_size;
for (auto offset = byte_begin; offset < byte_end;)
{
auto const loc = torrent->byteLoc(offset);
auto const left_in_block = block_size - loc.block_offset;
auto const left_in_piece = torrent->pieceSize(loc.piece) - loc.piece_offset;
auto const req_len = std::min(left_in_block, left_in_piece);
protocolSendRequest({ loc.piece, loc.piece_offset, req_len });
offset += req_len;
}
}
tr_peerMgrClientSentRequests(torrent, this, *span);
}
}
// how many blocks could we request from this peer right now?
[[nodiscard]] RequestLimit canRequest() const noexcept override
{
auto const max_blocks = maxAvailableReqs();
return RequestLimit{ max_blocks, max_blocks };
}
void sendPex();
void publish(tr_peer_event const& peer_event)
{
if (callback_ != nullptr)
{
(*callback_)(this, peer_event, callback_data_);
}
}
private:
[[nodiscard]] size_t maxAvailableReqs() const
{
if (torrent->isDone() || !torrent->hasMetainfo() || client_is_choked_ || !client_is_interested_)
{
return 0;
}
// Get the rate limit we should use.
// TODO: this needs to consider all the other peers as well...
uint64_t const now = tr_time_msec();
auto rate_bytes_per_second = get_piece_speed_bytes_per_second(now, TR_PEER_TO_CLIENT);
if (torrent->usesSpeedLimit(TR_PEER_TO_CLIENT))
{
rate_bytes_per_second = std::min(rate_bytes_per_second, torrent->speedLimitBps(TR_PEER_TO_CLIENT));
}
// honor the session limits, if enabled
if (torrent->usesSessionLimits())
{
if (auto const irate_bytes_per_second = torrent->session->activeSpeedLimitBps(TR_PEER_TO_CLIENT);
irate_bytes_per_second)
{
rate_bytes_per_second = std::min(rate_bytes_per_second, *irate_bytes_per_second);
}
}
// use this desired rate to figure out how
// many requests we should send to this peer
size_t constexpr Floor = 32;
size_t constexpr Seconds = RequestBufSecs;
size_t const estimated_blocks_in_period = (rate_bytes_per_second * Seconds) / tr_block_info::BlockSize;
size_t const ceil = reqq ? *reqq : 250;
return std::clamp(estimated_blocks_in_period, Floor, ceil);
}
void protocolSendRequest(struct peer_request const& req)
{
TR_ASSERT(isValidRequest(req));
auto& out = outMessages;
out.add_uint32(sizeof(uint8_t) + 3 * sizeof(uint32_t));
out.add_uint8(BtPeerMsgs::Request);
out.add_uint32(req.index);
out.add_uint32(req.offset);
out.add_uint32(req.length);
logtrace(this, fmt::format(FMT_STRING("requesting {:d}:{:d}->{:d}..."), req.index, req.offset, req.length));
dbgOutMessageLen();
pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
[[nodiscard]] bool calculate_active(tr_direction direction) const
{
if (direction == TR_CLIENT_TO_PEER)
{
return is_peer_interested() && !is_peer_choked();
}
// TR_PEER_TO_CLIENT
if (!torrent->hasMetainfo())
{
return true;
}
auto const active = is_client_interested() && !is_client_choked();
TR_ASSERT(!active || !torrent->isDone());
return active;
}
void set_active(tr_direction direction, bool active)
{
// TODO logtrace(msgs, "direction [%d] is_active [%d]", int(direction), int(is_active));
auto& val = is_active_[direction];
if (val != active)
{
val = active;
tr_swarmIncrementActivePeers(torrent->swarm, direction, active);
}
}
public:
/* Whether or not we've choked this peer. */
bool peer_is_choked_ = true;
/* whether or not the peer has indicated it will download from us. */
bool peer_is_interested_ = false;
/* whether or not the peer is choking us. */
bool client_is_choked_ = true;
/* whether or not we've indicated to the peer that we would download from them if unchoked. */
bool client_is_interested_ = false;
bool peerSupportsPex = false;
bool peerSupportsMetadataXfer = false;
bool clientSentLtepHandshake = false;
bool peerSentLtepHandshake = false;
size_t desired_request_count = 0;
/* how long the outMessages batch should be allowed to grow before
* it's flushed -- some messages (like requests >:) should be sent
* very quickly; others aren't as urgent. */
int8_t outMessagesBatchPeriod;
AwaitingBt state = AwaitingBt::Length;
uint8_t ut_pex_id = 0;
uint8_t ut_metadata_id = 0;
tr_port dht_port;
EncryptionPreference encryption_preference = EncryptionPreference::Unknown;
size_t metadata_size_hint = 0;
tr_torrent* const torrent;
libtransmission::Buffer outMessages; /* all the non-piece messages */
std::shared_ptr<tr_peerIo> const io;
struct QueuedPeerRequest : public peer_request
{
explicit QueuedPeerRequest(peer_request in) noexcept
: peer_request{ in }
{
}
bool prefetched = false;
};
std::vector<QueuedPeerRequest> peer_requested_;
std::vector<tr_pex> pex;
std::vector<tr_pex> pex6;
std::queue<int> peerAskedForMetadata;
time_t clientSentAnythingAt = 0;
time_t chokeChangedAt = 0;
/* when we started batching the outMessages */
time_t outMessagesBatchedAt = 0;
struct tr_incoming incoming = {};
/* if the peer supports the Extension Protocol in BEP 10 and
supplied a reqq argument, it's stored here. */
std::optional<size_t> reqq;
std::unique_ptr<libtransmission::Timer> pex_timer_;
tr_bitfield have_;
private:
std::array<bool, 2> is_active_ = { false, false };
tr_peer_callback const callback_;
void* const callback_data_;
// seconds between periodic sendPex() calls
static auto constexpr SendPexInterval = 90s;
};
// ---
void protocolSendReject(tr_peerMsgsImpl* msgs, struct peer_request const* req)
{
TR_ASSERT(msgs->io->supports_fext());
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t) + 3 * sizeof(uint32_t));
out.add_uint8(BtPeerMsgs::FextReject);
out.add_uint32(req->index);
out.add_uint32(req->offset);
out.add_uint32(req->length);
logtrace(msgs, fmt::format(FMT_STRING("rejecting {:d}:{:d}->{:d}..."), req->index, req->offset, req->length));
msgs->dbgOutMessageLen();
}
void protocolSendCancel(tr_peerMsgsImpl* msgs, peer_request const& req)
{
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t) + 3 * sizeof(uint32_t));
out.add_uint8(BtPeerMsgs::Cancel);
out.add_uint32(req.index);
out.add_uint32(req.offset);
out.add_uint32(req.length);
logtrace(msgs, fmt::format(FMT_STRING("cancelling {:d}:{:d}->{:d}..."), req.index, req.offset, req.length));
msgs->dbgOutMessageLen();
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
void protocolSendPort(tr_peerMsgsImpl* msgs, tr_port port)
{
auto& out = msgs->outMessages;
logtrace(msgs, fmt::format(FMT_STRING("sending Port {:d}"), port.host()));
out.add_uint32(3);
out.add_uint8(BtPeerMsgs::Port);
out.add_port(port);
}
void protocolSendHave(tr_peerMsgsImpl* msgs, tr_piece_index_t index)
{
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t) + sizeof(uint32_t));
out.add_uint8(BtPeerMsgs::Have);
out.add_uint32(index);
logtrace(msgs, fmt::format(FMT_STRING("sending Have {:d}"), index));
msgs->dbgOutMessageLen();
msgs->pokeBatchPeriod(LowPriorityIntervalSecs);
}
void protocolSendChoke(tr_peerMsgsImpl* msgs, bool choke)
{
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t));
out.add_uint8(choke ? BtPeerMsgs::Choke : BtPeerMsgs::Unchoke);
logtrace(msgs, choke ? "sending choke" : "sending unchoked");
msgs->dbgOutMessageLen();
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
void protocolSendHaveAll(tr_peerMsgsImpl* msgs)
{
TR_ASSERT(msgs->io->supports_fext());
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t));
out.add_uint8(BtPeerMsgs::FextHaveAll);
logtrace(msgs, "sending HAVE_ALL...");
msgs->dbgOutMessageLen();
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
void protocolSendHaveNone(tr_peerMsgsImpl* msgs)
{
TR_ASSERT(msgs->io->supports_fext());
auto& out = msgs->outMessages;
out.add_uint32(sizeof(uint8_t));
out.add_uint8(BtPeerMsgs::FextHaveNone);
logtrace(msgs, "sending HAVE_NONE...");
msgs->dbgOutMessageLen();
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
// --- INTEREST
void sendInterest(tr_peerMsgsImpl* msgs, bool b)
{
TR_ASSERT(msgs != nullptr);
auto& out = msgs->outMessages;
logtrace(msgs, b ? "Sending Interested" : "Sending Not Interested");
out.add_uint32(sizeof(uint8_t));
out.add_uint8(b ? BtPeerMsgs::Interested : BtPeerMsgs::NotInterested);
msgs->pokeBatchPeriod(HighPriorityIntervalSecs);
msgs->dbgOutMessageLen();
}
bool popNextMetadataRequest(tr_peerMsgsImpl* msgs, int* setme)
{
if (std::empty(msgs->peerAskedForMetadata))
{
return false;
}
auto& reqs = msgs->peerAskedForMetadata;
*setme = reqs.front();
reqs.pop();
return true;
}
void cancelAllRequestsToClient(tr_peerMsgsImpl* msgs)
{
if (auto const must_send_rej = msgs->io->supports_fext(); must_send_rej)
{
for (auto const& req : msgs->peer_requested_)
{
protocolSendReject(msgs, &req);
}
}
msgs->peer_requested_.clear();
}
// ---
void sendLtepHandshake(tr_peerMsgsImpl* msgs)
{
auto& out = msgs->outMessages;
static tr_quark version_quark = 0;
if (msgs->clientSentLtepHandshake)
{
return;
}
if (version_quark == 0)
{
version_quark = tr_quark_new(TR_NAME " " USERAGENT_PREFIX);
}
logtrace(msgs, "sending an ltep handshake");
msgs->clientSentLtepHandshake = true;
/* decide if we want to advertise metadata xfer support (BEP 9) */
bool const allow_metadata_xfer = msgs->torrent->isPublic();
/* decide if we want to advertise pex support */
auto allow_pex = bool{};
if (!msgs->torrent->allowsPex())
{
allow_pex = false;
}
else if (msgs->peerSentLtepHandshake)
{
allow_pex = msgs->peerSupportsPex;
}
else
{
allow_pex = true;
}
auto val = tr_variant{};
tr_variantInitDict(&val, 8);
tr_variantDictAddBool(&val, TR_KEY_e, msgs->session->encryptionMode() != TR_CLEAR_PREFERRED);
if (auto const [addr, is_any] = msgs->session->publicAddress(TR_AF_INET6); !is_any)
{
TR_ASSERT(addr.is_ipv6());
tr_variantDictAddRaw(&val, TR_KEY_ipv6, &addr.addr.addr6, sizeof(addr.addr.addr6));
}
// http://bittorrent.org/beps/bep_0009.html
// It also adds "metadata_size" to the handshake message (not the
// "m" dictionary) specifying an integer value of the number of
// bytes of the metadata.
if (auto const info_dict_size = msgs->torrent->infoDictSize();
allow_metadata_xfer && msgs->torrent->hasMetainfo() && info_dict_size > 0)
{
tr_variantDictAddInt(&val, TR_KEY_metadata_size, info_dict_size);
}
// http://bittorrent.org/beps/bep_0010.html
// Local TCP listen port. Allows each side to learn about the TCP
// port number of the other side. Note that there is no need for the
// receiving side of the connection to send this extension message,
// since its port number is already known.
tr_variantDictAddInt(&val, TR_KEY_p, msgs->session->advertisedPeerPort().host());
// http://bittorrent.org/beps/bep_0010.html
// An integer, the number of outstanding request messages this
// client supports without dropping any. The default in in
// libtorrent is 250.
tr_variantDictAddInt(&val, TR_KEY_reqq, ReqQ);
// https://www.bittorrent.org/beps/bep_0010.html
// A string containing the compact representation of the ip address this peer sees
// you as. i.e. this is the receiver's external ip address (no port is included).
// This may be either an IPv4 (4 bytes) or an IPv6 (16 bytes) address.
{
auto buf = std::array<std::byte, TR_ADDRSTRLEN>{};
auto const begin = std::data(buf);
auto const end = msgs->io->address().to_compact(begin);
auto const len = end - begin;
TR_ASSERT(len == 4 || len == 16);
tr_variantDictAddRaw(&val, TR_KEY_yourip, begin, len);
}
// http://bittorrent.org/beps/bep_0010.html
// Client name and version (as a utf-8 string). This is a much more
// reliable way of identifying the client than relying on the
// peer id encoding.
tr_variantDictAddQuark(&val, TR_KEY_v, version_quark);
// http://bittorrent.org/beps/bep_0021.html
// A peer that is a partial seed SHOULD include an extra header in
// the extension handshake 'upload_only'. Setting the value of this
// key to 1 indicates that this peer is not interested in downloading
// anything.
tr_variantDictAddBool(&val, TR_KEY_upload_only, msgs->torrent->isDone());
if (allow_metadata_xfer || allow_pex)
{
tr_variant* m = tr_variantDictAddDict(&val, TR_KEY_m, 2);
if (allow_metadata_xfer)
{
tr_variantDictAddInt(m, TR_KEY_ut_metadata, UT_METADATA_ID);
}
if (allow_pex)
{
tr_variantDictAddInt(m, TR_KEY_ut_pex, UT_PEX_ID);
}
}
auto payload = tr_variantToStr(&val, TR_VARIANT_FMT_BENC);
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(LtepMessages::Handshake);
out.add(payload);
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
msgs->dbgOutMessageLen();
/* cleanup */
tr_variantClear(&val);
}
void parseLtepHandshake(tr_peerMsgsImpl* msgs, uint32_t len)
{
msgs->peerSentLtepHandshake = true;
// LTEP messages are usually just a couple hundred bytes,
// so try using a strbuf to handle it on the stack
auto tmp = tr_strbuf<char, 512>{};
tmp.resize(len);
msgs->io->read_bytes(std::data(tmp), std::size(tmp));
auto const handshake_sv = tmp.sv();
auto val = tr_variant{};
if (!tr_variantFromBuf(&val, TR_VARIANT_PARSE_BENC | TR_VARIANT_PARSE_INPLACE, handshake_sv) || !tr_variantIsDict(&val))
{
logtrace(msgs, "GET extended-handshake, couldn't get dictionary");
return;
}
logtrace(msgs, fmt::format(FMT_STRING("here is the base64-encoded handshake: [{:s}]"), tr_base64_encode(handshake_sv)));
/* does the peer prefer encrypted connections? */
auto i = int64_t{};
auto pex = tr_pex{};
if (tr_variantDictFindInt(&val, TR_KEY_e, &i))
{
msgs->encryption_preference = i != 0 ? EncryptionPreference::Yes : EncryptionPreference::No;
if (msgs->encryption_preference == EncryptionPreference::Yes)
{
pex.flags |= ADDED_F_ENCRYPTION_FLAG;
}
}
/* check supported messages for utorrent pex */
msgs->peerSupportsPex = false;
msgs->peerSupportsMetadataXfer = false;
if (tr_variant* sub = nullptr; tr_variantDictFindDict(&val, TR_KEY_m, &sub))
{
if (tr_variantDictFindInt(sub, TR_KEY_ut_pex, &i))
{
msgs->peerSupportsPex = i != 0;
msgs->ut_pex_id = (uint8_t)i;
logtrace(msgs, fmt::format(FMT_STRING("msgs->ut_pex is {:d}"), static_cast<int>(msgs->ut_pex_id)));
}
if (tr_variantDictFindInt(sub, TR_KEY_ut_metadata, &i))
{
msgs->peerSupportsMetadataXfer = i != 0;
msgs->ut_metadata_id = (uint8_t)i;
logtrace(msgs, fmt::format(FMT_STRING("msgs->ut_metadata_id is {:d}"), static_cast<int>(msgs->ut_metadata_id)));
}
if (tr_variantDictFindInt(sub, TR_KEY_ut_holepunch, &i))
{
/* Mysterious µTorrent extension that we don't grok. However,
it implies support for µTP, so use it to indicate that. */
tr_peerMgrSetUtpFailed(msgs->torrent, msgs->io->address(), false);
}
}
/* look for metainfo size (BEP 9) */
if (tr_variantDictFindInt(&val, TR_KEY_metadata_size, &i) && tr_torrentSetMetadataSizeHint(msgs->torrent, i))
{
msgs->metadata_size_hint = (size_t)i;
}
/* look for upload_only (BEP 21) */
if (tr_variantDictFindInt(&val, TR_KEY_upload_only, &i))
{
pex.flags |= ADDED_F_SEED_FLAG;
}
/* get peer's listening port */
if (tr_variantDictFindInt(&val, TR_KEY_p, &i))
{
pex.port.setHost(i);
msgs->publish(tr_peer_event::GotPort(pex.port));
logtrace(msgs, fmt::format(FMT_STRING("peer's port is now {:d}"), i));
}
uint8_t const* addr = nullptr;
auto addr_len = size_t{};
if (msgs->io->is_incoming() && tr_variantDictFindRaw(&val, TR_KEY_ipv4, &addr, &addr_len) && addr_len == 4)
{
pex.addr.type = TR_AF_INET;
memcpy(&pex.addr.addr.addr4, addr, 4);
tr_peerMgrAddPex(msgs->torrent, TR_PEER_FROM_LTEP, &pex, 1);
}
if (msgs->io->is_incoming() && tr_variantDictFindRaw(&val, TR_KEY_ipv6, &addr, &addr_len) && addr_len == 16)
{
pex.addr.type = TR_AF_INET6;
memcpy(&pex.addr.addr.addr6, addr, 16);
tr_peerMgrAddPex(msgs->torrent, TR_PEER_FROM_LTEP, &pex, 1);
}
/* get peer's maximum request queue size */
if (tr_variantDictFindInt(&val, TR_KEY_reqq, &i))
{
msgs->reqq = i;
}
tr_variantClear(&val);
}
void parseUtMetadata(tr_peerMsgsImpl* msgs, uint32_t msglen)
{
int64_t msg_type = -1;
int64_t piece = -1;
int64_t total_size = 0;
auto tmp = std::vector<char>{};
tmp.resize(msglen);
msgs->io->read_bytes(std::data(tmp), std::size(tmp));
char const* const msg_end = std::data(tmp) + std::size(tmp);
auto dict = tr_variant{};
char const* benc_end = nullptr;
if (tr_variantFromBuf(&dict, TR_VARIANT_PARSE_BENC | TR_VARIANT_PARSE_INPLACE, tmp, &benc_end))
{
(void)tr_variantDictFindInt(&dict, TR_KEY_msg_type, &msg_type);
(void)tr_variantDictFindInt(&dict, TR_KEY_piece, &piece);
(void)tr_variantDictFindInt(&dict, TR_KEY_total_size, &total_size);
tr_variantClear(&dict);
}
logtrace(
msgs,
fmt::format(FMT_STRING("got ut_metadata msg: type {:d}, piece {:d}, total_size {:d}"), msg_type, piece, total_size));
if (msg_type == MetadataMsgType::Reject)
{
/* NOOP */
}
if (msg_type == MetadataMsgType::Data && !msgs->torrent->hasMetainfo() && msg_end - benc_end <= METADATA_PIECE_SIZE &&
piece * METADATA_PIECE_SIZE + (msg_end - benc_end) <= total_size)
{
size_t const piece_len = msg_end - benc_end;
tr_torrentSetMetadataPiece(msgs->torrent, piece, benc_end, piece_len);
}
if (msg_type == MetadataMsgType::Request)
{
if (piece >= 0 && msgs->torrent->hasMetainfo() && msgs->torrent->isPublic() &&
std::size(msgs->peerAskedForMetadata) < MetadataReqQ)
{
msgs->peerAskedForMetadata.push(piece);
}
else
{
auto& out = msgs->outMessages;
/* build the rejection message */
auto v = tr_variant{};
tr_variantInitDict(&v, 2);
tr_variantDictAddInt(&v, TR_KEY_msg_type, MetadataMsgType::Reject);
tr_variantDictAddInt(&v, TR_KEY_piece, piece);
auto const payload = tr_variantToStr(&v, TR_VARIANT_FMT_BENC);
/* write it out as a LTEP message to our outMessages buffer */
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(msgs->ut_metadata_id);
out.add(payload);
msgs->pokeBatchPeriod(HighPriorityIntervalSecs);
msgs->dbgOutMessageLen();
/* cleanup */
tr_variantClear(&v);
}
}
}
void parseUtPex(tr_peerMsgsImpl* msgs, uint32_t msglen)
{
auto* const tor = msgs->torrent;
if (!tor->allowsPex())
{
return;
}
auto tmp = std::vector<char>{};
tmp.resize(msglen);
msgs->io->read_bytes(std::data(tmp), std::size(tmp));
if (tr_variant val; tr_variantFromBuf(&val, TR_VARIANT_PARSE_BENC | TR_VARIANT_PARSE_INPLACE, tmp))
{
uint8_t const* added = nullptr;
auto added_len = size_t{};
if (tr_variantDictFindRaw(&val, TR_KEY_added, &added, &added_len))
{
uint8_t const* added_f = nullptr;
auto added_f_len = size_t{};
if (!tr_variantDictFindRaw(&val, TR_KEY_added_f, &added_f, &added_f_len))
{
added_f_len = 0;
added_f = nullptr;
}
auto pex = tr_pex::from_compact_ipv4(added, added_len, added_f, added_f_len);
pex.resize(std::min(MaxPexPeerCount, std::size(pex)));
tr_peerMgrAddPex(tor, TR_PEER_FROM_PEX, std::data(pex), std::size(pex));
}
if (tr_variantDictFindRaw(&val, TR_KEY_added6, &added, &added_len))
{
uint8_t const* added_f = nullptr;
auto added_f_len = size_t{};
if (!tr_variantDictFindRaw(&val, TR_KEY_added6_f, &added_f, &added_f_len))
{
added_f_len = 0;
added_f = nullptr;
}
auto pex = tr_pex::from_compact_ipv6(added, added_len, added_f, added_f_len);
pex.resize(std::min(MaxPexPeerCount, std::size(pex)));
tr_peerMgrAddPex(tor, TR_PEER_FROM_PEX, std::data(pex), std::size(pex));
}
tr_variantClear(&val);
}
}
void parseLtep(tr_peerMsgsImpl* msgs, uint32_t msglen)
{
TR_ASSERT(msglen > 0);
auto ltep_msgid = uint8_t{};
msgs->io->read_uint8(&ltep_msgid);
msglen--;
if (ltep_msgid == LtepMessages::Handshake)
{
logtrace(msgs, "got ltep handshake");
parseLtepHandshake(msgs, msglen);
if (msgs->io->supports_ltep())
{
sendLtepHandshake(msgs);
msgs->sendPex();
}
}
else if (ltep_msgid == UT_PEX_ID)
{
logtrace(msgs, "got ut pex");
msgs->peerSupportsPex = true;
parseUtPex(msgs, msglen);
}
else if (ltep_msgid == UT_METADATA_ID)
{
logtrace(msgs, "got ut metadata");
msgs->peerSupportsMetadataXfer = true;
parseUtMetadata(msgs, msglen);
}
else
{
logtrace(msgs, fmt::format(FMT_STRING("skipping unknown ltep message ({:d})"), static_cast<int>(ltep_msgid)));
msgs->io->read_buffer_drain(msglen);
}
}
ReadState readBtLength(tr_peerMsgsImpl* msgs, size_t inlen)
{
auto len = uint32_t{};
if (inlen < sizeof(len))
{
return READ_LATER;
}
msgs->io->read_uint32(&len);
if (len == 0) /* peer sent us a keepalive message */
{
logtrace(msgs, "got KeepAlive");
}
else
{
msgs->incoming.length = len;
msgs->state = AwaitingBt::Id;
}
return READ_NOW;
}
ReadState readBtMessage(tr_peerMsgsImpl* /*msgs*/, size_t /*inlen*/);
ReadState readBtId(tr_peerMsgsImpl* msgs, size_t inlen)
{
if (inlen < sizeof(uint8_t))
{
return READ_LATER;
}
auto id = uint8_t{};
msgs->io->read_uint8(&id);
msgs->incoming.id = id;
logtrace(
msgs,
fmt::format(FMT_STRING("msgs->incoming.id is now {:d}: msgs->incoming.length is {:d}"), id, msgs->incoming.length));
if (id == BtPeerMsgs::Piece)
{
msgs->state = AwaitingBt::Piece;
return READ_NOW;
}
if (msgs->incoming.length != 1)
{
msgs->state = AwaitingBt::Message;
return READ_NOW;
}
return readBtMessage(msgs, inlen - 1);
}
void prefetchPieces(tr_peerMsgsImpl* msgs)
{
if (!msgs->session->allowsPrefetch())
{
return;
}
// ensure that the first `PrefetchMax` items in `msgs->peer_requested_` are prefetched.
auto& requests = msgs->peer_requested_;
for (size_t i = 0, n = std::min(PrefetchMax, std::size(requests)); i < n; ++i)
{
if (auto& req = requests[i]; !req.prefetched)
{
msgs->session->cache->prefetchBlock(msgs->torrent, msgs->torrent->pieceLoc(req.index, req.offset), req.length);
req.prefetched = true;
}
}
}
[[nodiscard]] bool canAddRequestFromPeer(tr_peerMsgsImpl const* const msgs, struct peer_request const& req)
{
if (msgs->peer_is_choked_)
{
logtrace(msgs, "rejecting request from choked peer");
return false;
}
if (std::size(msgs->peer_requested_) >= ReqQ)
{
logtrace(msgs, "rejecting request ... reqq is full");
return false;
}
if (!tr_torrentReqIsValid(msgs->torrent, req.index, req.offset, req.length))
{
logtrace(msgs, "rejecting an invalid request.");
return false;
}
if (!msgs->torrent->hasPiece(req.index))
{
logtrace(msgs, "rejecting request for a piece we don't have.");
return false;
}
return true;
}
void peerMadeRequest(tr_peerMsgsImpl* msgs, struct peer_request const* req)
{
if (canAddRequestFromPeer(msgs, *req))
{
msgs->peer_requested_.emplace_back(*req);
prefetchPieces(msgs);
}
else if (msgs->io->supports_fext())
{
protocolSendReject(msgs, req);
}
}
bool messageLengthIsCorrect(tr_peerMsgsImpl const* msg, uint8_t id, uint32_t len)
{
switch (id)
{
case BtPeerMsgs::Choke:
case BtPeerMsgs::Unchoke:
case BtPeerMsgs::Interested:
case BtPeerMsgs::NotInterested:
case BtPeerMsgs::FextHaveAll:
case BtPeerMsgs::FextHaveNone:
return len == 1;
case BtPeerMsgs::Have:
case BtPeerMsgs::FextSuggest:
case BtPeerMsgs::FextAllowedFast:
return len == 5;
case BtPeerMsgs::Bitfield:
if (msg->torrent->hasMetainfo())
{
return len == (msg->torrent->pieceCount() >> 3) + ((msg->torrent->pieceCount() & 7) != 0 ? 1 : 0) + 1U;
}
/* we don't know the piece count yet,
so we can only guess whether to send true or false */
if (msg->metadata_size_hint > 0)
{
return len <= msg->metadata_size_hint;
}
return true;
case BtPeerMsgs::Request:
case BtPeerMsgs::Cancel:
case BtPeerMsgs::FextReject:
return len == 13;
case BtPeerMsgs::Piece:
return len > 9 && len <= 16393;
case BtPeerMsgs::Port:
return len == 3;
case BtPeerMsgs::Ltep:
return len >= 2;
default:
return false;
}
}
int clientGotBlock(tr_peerMsgsImpl* msgs, std::unique_ptr<std::vector<uint8_t>>& block_data, tr_block_index_t block);
ReadState readBtPiece(tr_peerMsgsImpl* msgs, size_t inlen, size_t* setme_piece_bytes_read)
{
TR_ASSERT(msgs->io->read_buffer_size() >= inlen);
logtrace(msgs, "In readBtPiece");
// If this is the first we've seen of the piece data, parse out the header
if (!msgs->incoming.block_req)
{
if (inlen < 8)
{
return READ_LATER;
}
auto req = peer_request{};
msgs->io->read_uint32(&req.index);
msgs->io->read_uint32(&req.offset);
req.length = msgs->incoming.length - 9;
logtrace(msgs, fmt::format(FMT_STRING("got incoming block header {:d}:{:d}->{:d}"), req.index, req.offset, req.length));
msgs->incoming.block_req = req;
return READ_NOW;
}
auto& req = msgs->incoming.block_req;
auto const loc = msgs->torrent->pieceLoc(req->index, req->offset);
auto const block = loc.block;
auto const block_size = msgs->torrent->blockSize(block);
auto& block_buf = msgs->incoming.block_buf[block];
if (!block_buf)
{
block_buf = std::make_unique<std::vector<uint8_t>>();
block_buf->reserve(block_size);
}
// read in another chunk of data
auto const n_left_in_block = block_size - std::size(*block_buf);
auto const n_left_in_req = size_t{ req->length };
auto const n_to_read = std::min({ n_left_in_block, n_left_in_req, inlen });
auto const old_length = std::size(*block_buf);
block_buf->resize(old_length + n_to_read);
msgs->io->read_bytes(&((*block_buf)[old_length]), n_to_read);
msgs->publish(tr_peer_event::GotPieceData(n_to_read));
*setme_piece_bytes_read += n_to_read;
logtrace(
msgs,
fmt::format(
FMT_STRING("got {:d} bytes for block {:d}:{:d}->{:d} ... {:d} remain in req, {:d} remain in block"),
n_to_read,
req->index,
req->offset,
req->length,
req->length,
block_size - std::size(*block_buf)));
// if we didn't read enough to finish off the request,
// update the table and wait for more
if (n_to_read < n_left_in_req)
{
auto new_loc = msgs->torrent->byteLoc(loc.byte + n_to_read);
req->index = new_loc.piece;
req->offset = new_loc.piece_offset;
req->length -= n_to_read;
return READ_LATER;
}
// we've fully read this message
req.reset();
msgs->state = AwaitingBt::Length;
// if we didn't read enough to finish off the block,
// update the table and wait for more
if (std::size(*block_buf) < block_size)
{
return READ_LATER;
}
return clientGotBlock(msgs, block_buf, block) != 0 ? READ_ERR : READ_NOW;
}
ReadState readBtMessage(tr_peerMsgsImpl* msgs, size_t inlen)
{
uint8_t const id = msgs->incoming.id;
#ifdef TR_ENABLE_ASSERTS
auto const start_buflen = msgs->io->read_buffer_size();
#endif
bool const fext = msgs->io->supports_fext();
auto ui32 = uint32_t{};
auto msglen = uint32_t{ msgs->incoming.length };
TR_ASSERT(msglen > 0);
--msglen; /* id length */
logtrace(
msgs,
fmt::format(FMT_STRING("got BT id {:d}, len {:d}, buffer size is {:d}"), static_cast<int>(id), msglen, inlen));
if (inlen < msglen)
{
return READ_LATER;
}
if (!messageLengthIsCorrect(msgs, id, msglen + 1))
{
logdbg(
msgs,
fmt::format(FMT_STRING("bad packet - BT message #{:d} with a length of {:d}"), static_cast<int>(id), msglen));
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
switch (id)
{
case BtPeerMsgs::Choke:
logtrace(msgs, "got Choke");
msgs->client_is_choked_ = true;
if (!fext)
{
msgs->publish(tr_peer_event::GotChoke());
}
msgs->update_active(TR_PEER_TO_CLIENT);
break;
case BtPeerMsgs::Unchoke:
logtrace(msgs, "got Unchoke");
msgs->client_is_choked_ = false;
msgs->update_active(TR_PEER_TO_CLIENT);
updateDesiredRequestCount(msgs);
break;
case BtPeerMsgs::Interested:
logtrace(msgs, "got Interested");
msgs->peer_is_interested_ = true;
msgs->update_active(TR_CLIENT_TO_PEER);
break;
case BtPeerMsgs::NotInterested:
logtrace(msgs, "got Not Interested");
msgs->peer_is_interested_ = false;
msgs->update_active(TR_CLIENT_TO_PEER);
break;
case BtPeerMsgs::Have:
msgs->io->read_uint32(&ui32);
logtrace(msgs, fmt::format(FMT_STRING("got Have: {:d}"), ui32));
if (msgs->torrent->hasMetainfo() && ui32 >= msgs->torrent->pieceCount())
{
msgs->publish(tr_peer_event::GotError(ERANGE));
return READ_ERR;
}
/* a peer can send the same HAVE message twice... */
if (!msgs->have_.test(ui32))
{
msgs->have_.set(ui32);
msgs->publish(tr_peer_event::GotHave(ui32));
}
msgs->invalidatePercentDone();
break;
case BtPeerMsgs::Bitfield:
{
logtrace(msgs, "got a bitfield");
auto tmp = std::vector<uint8_t>(msglen);
msgs->io->read_bytes(std::data(tmp), std::size(tmp));
msgs->have_ = tr_bitfield{ msgs->torrent->hasMetainfo() ? msgs->torrent->pieceCount() : std::size(tmp) * 8 };
msgs->have_.setRaw(std::data(tmp), std::size(tmp));
msgs->publish(tr_peer_event::GotBitfield(&msgs->have_));
msgs->invalidatePercentDone();
break;
}
case BtPeerMsgs::Request:
{
struct peer_request r;
msgs->io->read_uint32(&r.index);
msgs->io->read_uint32(&r.offset);
msgs->io->read_uint32(&r.length);
logtrace(msgs, fmt::format(FMT_STRING("got Request: {:d}:{:d}->{:d}"), r.index, r.offset, r.length));
peerMadeRequest(msgs, &r);
break;
}
case BtPeerMsgs::Cancel:
{
struct peer_request r;
msgs->io->read_uint32(&r.index);
msgs->io->read_uint32(&r.offset);
msgs->io->read_uint32(&r.length);
msgs->cancels_sent_to_client.add(tr_time(), 1);
logtrace(msgs, fmt::format(FMT_STRING("got a Cancel {:d}:{:d}->{:d}"), r.index, r.offset, r.length));
auto& requests = msgs->peer_requested_;
if (auto iter = std::find(std::begin(requests), std::end(requests), r); iter != std::end(requests))
{
requests.erase(iter);
// bep6: "Even when a request is cancelled, the peer
// receiving the cancel should respond with either the
// corresponding reject or the corresponding piece"
if (fext)
{
protocolSendReject(msgs, &r);
}
}
break;
}
case BtPeerMsgs::Piece:
TR_ASSERT(false); /* handled elsewhere! */
break;
case BtPeerMsgs::Port:
// http://bittorrent.org/beps/bep_0005.html
// Peers supporting the DHT set the last bit of the 8-byte reserved flags
// exchanged in the BitTorrent protocol handshake. Peer receiving a handshake
// indicating the remote peer supports the DHT should send a PORT message.
// It begins with byte 0x09 and has a two byte payload containing the UDP
// port of the DHT node in network byte order.
{
logtrace(msgs, "Got a BtPeerMsgs::Port");
auto hport = uint16_t{};
msgs->io->read_uint16(&hport); // read_uint16 performs ntoh
if (auto const dht_port = tr_port::fromHost(hport); !std::empty(dht_port))
{
msgs->dht_port = dht_port;
msgs->session->addDhtNode(msgs->io->address(), msgs->dht_port);
}
}
break;
case BtPeerMsgs::FextSuggest:
logtrace(msgs, "Got a BtPeerMsgs::FextSuggest");
msgs->io->read_uint32(&ui32);
if (fext)
{
msgs->publish(tr_peer_event::GotSuggest(ui32));
}
else
{
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
break;
case BtPeerMsgs::FextAllowedFast:
logtrace(msgs, "Got a BtPeerMsgs::FextAllowedFast");
msgs->io->read_uint32(&ui32);
if (fext)
{
msgs->publish(tr_peer_event::GotAllowedFast(ui32));
}
else
{
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
break;
case BtPeerMsgs::FextHaveAll:
logtrace(msgs, "Got a BtPeerMsgs::FextHaveAll");
if (fext)
{
msgs->have_.setHasAll();
msgs->publish(tr_peer_event::GotHaveAll());
msgs->invalidatePercentDone();
}
else
{
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
break;
case BtPeerMsgs::FextHaveNone:
logtrace(msgs, "Got a BtPeerMsgs::FextHaveNone");
if (fext)
{
msgs->have_.setHasNone();
msgs->publish(tr_peer_event::GotHaveNone());
msgs->invalidatePercentDone();
}
else
{
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
break;
case BtPeerMsgs::FextReject:
{
struct peer_request r;
logtrace(msgs, "Got a BtPeerMsgs::FextReject");
msgs->io->read_uint32(&r.index);
msgs->io->read_uint32(&r.offset);
msgs->io->read_uint32(&r.length);
if (fext)
{
msgs->publish(
tr_peer_event::GotRejected(msgs->torrent->blockInfo(), msgs->torrent->pieceLoc(r.index, r.offset).block));
}
else
{
msgs->publish(tr_peer_event::GotError(EMSGSIZE));
return READ_ERR;
}
break;
}
case BtPeerMsgs::Ltep:
logtrace(msgs, "Got a BtPeerMsgs::Ltep");
parseLtep(msgs, msglen);
break;
default:
logtrace(msgs, fmt::format(FMT_STRING("peer sent us an UNKNOWN: {:d}"), static_cast<int>(id)));
msgs->io->read_buffer_drain(msglen);
break;
}
TR_ASSERT(msglen + 1 == msgs->incoming.length);
TR_ASSERT(msgs->io->read_buffer_size() == start_buflen - msglen);
msgs->state = AwaitingBt::Length;
return READ_NOW;
}
/* returns 0 on success, or an errno on failure */
int clientGotBlock(tr_peerMsgsImpl* msgs, std::unique_ptr<std::vector<uint8_t>>& block_data, tr_block_index_t const block)
{
TR_ASSERT(msgs != nullptr);
tr_torrent const* const tor = msgs->torrent;
auto const n_expected = msgs->torrent->blockSize(block);
if (!block_data)
{
logdbg(msgs, fmt::format("wrong block size: expected {:d}, got {:d}", n_expected, 0));
return EMSGSIZE;
}
if (std::size(*block_data) != msgs->torrent->blockSize(block))
{
logdbg(msgs, fmt::format("wrong block size: expected {:d}, got {:d}", n_expected, std::size(*block_data)));
block_data->clear();
return EMSGSIZE;
}
logtrace(msgs, fmt::format(FMT_STRING("got block {:d}"), block));
if (!tr_peerMgrDidPeerRequest(msgs->torrent, msgs, block))
{
logdbg(msgs, "we didn't ask for this message...");
block_data->clear();
return 0;
}
auto const loc = msgs->torrent->blockLoc(block);
if (msgs->torrent->hasPiece(loc.piece))
{
logtrace(msgs, "we did ask for this message, but the piece is already complete...");
block_data->clear();
return 0;
}
// NB: if writeBlock() fails the torrent may be paused.
// If this happens, `msgs` will be a dangling pointer and must no longer be used.
if (auto const err = msgs->session->cache->writeBlock(tor->id(), block, block_data); err != 0)
{
return err;
}
msgs->blame.set(loc.piece);
msgs->incoming.block_buf.erase(block);
msgs->publish(tr_peer_event::GotBlock(tor->blockInfo(), block));
return 0;
}
void didWrite(tr_peerIo* /*io*/, size_t bytes_written, bool was_piece_data, void* vmsgs)
{
auto* const msgs = static_cast<tr_peerMsgsImpl*>(vmsgs);
if (was_piece_data)
{
msgs->publish(tr_peer_event::SentPieceData(bytes_written));
}
peerPulse(msgs);
}
ReadState canRead(tr_peerIo* io, void* vmsgs, size_t* piece)
{
auto* msgs = static_cast<tr_peerMsgsImpl*>(vmsgs);
size_t const inlen = io->read_buffer_size();
logtrace(
msgs,
fmt::format(FMT_STRING("canRead: inlen is {:d}, msgs->state is {:d}"), inlen, static_cast<int>(msgs->state)));
auto ret = ReadState{};
if (inlen == 0)
{
ret = READ_LATER;
}
else if (msgs->state == AwaitingBt::Piece)
{
ret = readBtPiece(msgs, inlen, piece);
}
else
{
switch (msgs->state)
{
case AwaitingBt::Length:
ret = readBtLength(msgs, inlen);
break;
case AwaitingBt::Id:
ret = readBtId(msgs, inlen);
break;
case AwaitingBt::Message:
ret = readBtMessage(msgs, inlen);
break;
default:
#ifdef TR_ENABLE_ASSERTS
TR_ASSERT_MSG(false, fmt::format(FMT_STRING("unhandled peer messages state {:d}"), static_cast<int>(msgs->state)));
#else
ret = READ_ERR;
break;
#endif
}
}
return ret;
}
// ---
void updateDesiredRequestCount(tr_peerMsgsImpl* msgs)
{
msgs->desired_request_count = msgs->canRequest().max_blocks;
}
void updateMetadataRequests(tr_peerMsgsImpl* msgs, time_t now)
{
if (!msgs->peerSupportsMetadataXfer)
{
return;
}
if (auto const piece = tr_torrentGetNextMetadataRequest(msgs->torrent, now); piece)
{
auto& out = msgs->outMessages;
/* build the data message */
auto tmp = tr_variant{};
tr_variantInitDict(&tmp, 3);
tr_variantDictAddInt(&tmp, TR_KEY_msg_type, MetadataMsgType::Request);
tr_variantDictAddInt(&tmp, TR_KEY_piece, *piece);
auto const payload = tr_variantToStr(&tmp, TR_VARIANT_FMT_BENC);
logtrace(msgs, fmt::format(FMT_STRING("requesting metadata piece #{:d}"), *piece));
/* write it out as a LTEP message to our outMessages buffer */
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(msgs->ut_metadata_id);
out.add(payload);
msgs->pokeBatchPeriod(HighPriorityIntervalSecs);
msgs->dbgOutMessageLen();
/* cleanup */
tr_variantClear(&tmp);
}
}
void updateBlockRequests(tr_peerMsgsImpl* msgs)
{
auto* const tor = msgs->torrent;
if (!tor->clientCanDownload())
{
return;
}
auto const n_active = tr_peerMgrCountActiveRequestsToPeer(tor, msgs);
if (n_active >= msgs->desired_request_count)
{
return;
}
auto const n_wanted = msgs->desired_request_count - n_active;
if (n_wanted == 0)
{
return;
}
TR_ASSERT(msgs->is_client_interested());
TR_ASSERT(!msgs->is_client_choked());
if (auto const requests = tr_peerMgrGetNextRequests(tor, msgs, n_wanted); !std::empty(requests))
{
msgs->requestBlocks(std::data(requests), std::size(requests));
}
}
size_t fillOutputBuffer(tr_peerMsgsImpl* msgs, time_t now)
{
size_t bytes_written = 0;
struct peer_request req;
bool const have_messages = !std::empty(msgs->outMessages);
bool const fext = msgs->io->supports_fext();
// --- Protocol messages
if (have_messages && msgs->outMessagesBatchedAt == 0) /* fresh batch */
{
logtrace(msgs, fmt::format(FMT_STRING("started an outMessages batch (length is {:d})"), std::size(msgs->outMessages)));
msgs->outMessagesBatchedAt = now;
}
else if (have_messages && now - msgs->outMessagesBatchedAt >= msgs->outMessagesBatchPeriod)
{
auto const len = std::size(msgs->outMessages);
/* flush the protocol messages */
logtrace(msgs, fmt::format(FMT_STRING("flushing outMessages... to {:p} (length is {:d})"), fmt::ptr(msgs->io), len));
msgs->io->write(msgs->outMessages, false);
msgs->clientSentAnythingAt = now;
msgs->outMessagesBatchedAt = 0;
msgs->outMessagesBatchPeriod = LowPriorityIntervalSecs;
bytes_written += len;
}
// --- Metadata Pieces
if (auto piece = int{};
msgs->io->get_write_buffer_space(now) >= METADATA_PIECE_SIZE && popNextMetadataRequest(msgs, &piece))
{
auto ok = bool{ false };
if (auto const piece_data = tr_torrentGetMetadataPiece(msgs->torrent, piece); piece_data)
{
auto& out = msgs->outMessages;
/* build the data message */
auto tmp = tr_variant{};
tr_variantInitDict(&tmp, 3);
tr_variantDictAddInt(&tmp, TR_KEY_msg_type, MetadataMsgType::Data);
tr_variantDictAddInt(&tmp, TR_KEY_piece, piece);
tr_variantDictAddInt(&tmp, TR_KEY_total_size, msgs->torrent->infoDictSize());
auto const payload = tr_variantToStr(&tmp, TR_VARIANT_FMT_BENC);
/* write it out as a LTEP message to our outMessages buffer */
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload) + std::size(*piece_data));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(msgs->ut_metadata_id);
out.add(payload);
out.add(*piece_data);
msgs->pokeBatchPeriod(HighPriorityIntervalSecs);
msgs->dbgOutMessageLen();
tr_variantClear(&tmp);
ok = true;
}
if (!ok) /* send a rejection message */
{
auto& out = msgs->outMessages;
/* build the rejection message */
auto tmp = tr_variant{};
tr_variantInitDict(&tmp, 2);
tr_variantDictAddInt(&tmp, TR_KEY_msg_type, MetadataMsgType::Reject);
tr_variantDictAddInt(&tmp, TR_KEY_piece, piece);
auto payload = tr_variantToStr(&tmp, TR_VARIANT_FMT_BENC);
/* write it out as a LTEP message to our outMessages buffer */
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(msgs->ut_metadata_id);
out.add(payload);
msgs->pokeBatchPeriod(HighPriorityIntervalSecs);
msgs->dbgOutMessageLen();
tr_variantClear(&tmp);
}
}
// --- Data Blocks
if (msgs->io->get_write_buffer_space(now) >= tr_block_info::BlockSize && !std::empty(msgs->peer_requested_))
{
req = msgs->peer_requested_.front();
msgs->peer_requested_.erase(std::begin(msgs->peer_requested_));
if (msgs->isValidRequest(req) && msgs->torrent->hasPiece(req.index))
{
uint32_t const msglen = 4 + 1 + 4 + 4 + req.length;
auto out = libtransmission::Buffer{};
out.reserve(msglen);
out.add_uint32(sizeof(uint8_t) + 2 * sizeof(uint32_t) + req.length);
out.add_uint8(BtPeerMsgs::Piece);
out.add_uint32(req.index);
out.add_uint32(req.offset);
auto buf = std::array<uint8_t, tr_block_info::BlockSize>{};
bool err = msgs->session->cache->readBlock(
msgs->torrent,
msgs->torrent->pieceLoc(req.index, req.offset),
req.length,
std::data(buf)) != 0;
out.add(std::data(buf), req.length);
/* check the piece if it needs checking... */
if (!err)
{
err = !msgs->torrent->ensurePieceIsChecked(req.index);
if (err)
{
msgs->torrent->setLocalError(
fmt::format(FMT_STRING("Please Verify Local Data! Piece #{:d} is corrupt."), req.index));
}
}
if (err)
{
if (fext)
{
protocolSendReject(msgs, &req);
}
}
else
{
logtrace(msgs, fmt::format(FMT_STRING("sending block {:d}:{:d}->{:d}"), req.index, req.offset, req.length));
auto const n = std::size(out);
TR_ASSERT(n == msglen);
msgs->io->write(out, true);
bytes_written += n;
msgs->clientSentAnythingAt = now;
msgs->blocks_sent_to_peer.add(tr_time(), 1);
}
if (err)
{
bytes_written = 0;
msgs = nullptr;
}
}
else if (fext) /* peer needs a reject message */
{
protocolSendReject(msgs, &req);
}
if (msgs != nullptr)
{
prefetchPieces(msgs);
}
}
// --- Keepalive
if (msgs != nullptr && msgs->clientSentAnythingAt != 0 && now - msgs->clientSentAnythingAt > KeepaliveIntervalSecs)
{
logtrace(msgs, "sending a keepalive message");
msgs->outMessages.add_uint32(0);
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
return bytes_written;
}
void peerPulse(void* vmsgs)
{
auto* msgs = static_cast<tr_peerMsgsImpl*>(vmsgs);
time_t const now = tr_time();
updateDesiredRequestCount(msgs);
updateBlockRequests(msgs);
updateMetadataRequests(msgs, now);
for (;;)
{
if (fillOutputBuffer(msgs, now) < 1)
{
break;
}
}
}
void gotError(tr_peerIo* /*io*/, tr_error const& /*error*/, void* vmsgs)
{
static_cast<tr_peerMsgsImpl*>(vmsgs)->publish(tr_peer_event::GotError(ENOTCONN));
}
void sendBitfield(tr_peerMsgsImpl* msgs)
{
TR_ASSERT(msgs->torrent->hasMetainfo());
auto& out = msgs->outMessages;
auto bytes = msgs->torrent->createPieceBitfield();
out.add_uint32(sizeof(uint8_t) + bytes.size());
out.add_uint8(BtPeerMsgs::Bitfield);
out.add(bytes);
logtrace(msgs, fmt::format(FMT_STRING("sending bitfield... outMessage size is now {:d}"), std::size(out)));
msgs->pokeBatchPeriod(ImmediatePriorityIntervalSecs);
}
void tellPeerWhatWeHave(tr_peerMsgsImpl* msgs)
{
bool const fext = msgs->io->supports_fext();
if (fext && msgs->torrent->hasAll())
{
protocolSendHaveAll(msgs);
}
else if (fext && msgs->torrent->hasNone())
{
protocolSendHaveNone(msgs);
}
else if (!msgs->torrent->hasNone())
{
sendBitfield(msgs);
}
}
void tr_peerMsgsImpl::sendPex()
{
// only send pex if both the torrent and peer support it
if (!this->peerSupportsPex || !this->torrent->allowsPex())
{
return;
}
auto& old4 = this->pex;
auto new4 = tr_peerMgrGetPeers(this->torrent, TR_AF_INET, TR_PEERS_CONNECTED, MaxPexPeerCount);
auto added = std::vector<tr_pex>{};
added.reserve(std::size(new4));
std::set_difference(std::begin(new4), std::end(new4), std::begin(old4), std::end(old4), std::back_inserter(added));
auto dropped = std::vector<tr_pex>{};
dropped.reserve(std::size(old4));
std::set_difference(std::begin(old4), std::end(old4), std::begin(new4), std::end(new4), std::back_inserter(dropped));
auto& old6 = this->pex6;
auto new6 = tr_peerMgrGetPeers(this->torrent, TR_AF_INET6, TR_PEERS_CONNECTED, MaxPexPeerCount);
auto added6 = std::vector<tr_pex>{};
added6.reserve(std::size(new6));
std::set_difference(std::begin(new6), std::end(new6), std::begin(old6), std::end(old6), std::back_inserter(added6));
auto dropped6 = std::vector<tr_pex>{};
dropped6.reserve(std::size(old6));
std::set_difference(std::begin(old6), std::end(old6), std::begin(new6), std::end(new6), std::back_inserter(dropped6));
// Some peers give us error messages if we send
// more than this many peers in a single pex message.
// https://wiki.theory.org/BitTorrentPeerExchangeConventions
static auto constexpr MaxPexAdded = size_t{ 50 };
added.resize(std::min(std::size(added), MaxPexAdded));
added6.resize(std::min(std::size(added6), MaxPexAdded));
static auto constexpr MaxPexDropped = size_t{ 50 };
dropped.resize(std::min(std::size(dropped), MaxPexDropped));
dropped6.resize(std::min(std::size(dropped6), MaxPexDropped));
logtrace(
this,
fmt::format(
FMT_STRING("pex: old peer count {:d}+{:d}, new peer count {:d}+{:d}, added {:d}+{:d}, dropped {:d}+{:d}"),
std::size(old4),
std::size(old6),
std::size(new4),
std::size(new6),
std::size(added),
std::size(added6),
std::size(dropped),
std::size(dropped6)));
// if there's nothing to send, then we're done
if (std::empty(added) && std::empty(dropped) && std::empty(added6) && std::empty(dropped6))
{
return;
}
auto& out = this->outMessages;
// update msgs
std::swap(old4, new4);
std::swap(old6, new6);
// build the pex payload
auto val = tr_variant{};
tr_variantInitDict(&val, 3); /* ipv6 support: left as 3: speed vs. likelihood? */
auto tmpbuf = std::vector<std::byte>{};
tmpbuf.reserve(MaxPexAdded * 18);
if (!std::empty(added))
{
// "added"
tmpbuf.clear();
tr_pex::to_compact_ipv4(std::back_inserter(tmpbuf), std::data(added), std::size(added));
TR_ASSERT(std::size(tmpbuf) == std::size(added) * 6);
tr_variantDictAddRaw(&val, TR_KEY_added, std::data(tmpbuf), std::size(tmpbuf));
// "added.f"
// unset each holepunch flag because we don't support it.
tmpbuf.resize(std::size(added));
auto* begin = std::data(tmpbuf);
auto* walk = begin;
for (auto const& p : added)
{
*walk++ = std::byte{ p.flags } & ~std::byte{ ADDED_F_HOLEPUNCH };
}
TR_ASSERT(static_cast<size_t>(walk - begin) == std::size(added));
tr_variantDictAddRaw(&val, TR_KEY_added_f, begin, walk - begin);
}
if (!std::empty(dropped))
{
// "dropped"
tmpbuf.clear();
tr_pex::to_compact_ipv4(std::back_inserter(tmpbuf), std::data(dropped), std::size(dropped));
TR_ASSERT(std::size(tmpbuf) == std::size(dropped) * 6);
tr_variantDictAddRaw(&val, TR_KEY_dropped, std::data(tmpbuf), std::size(tmpbuf));
}
if (!std::empty(added6))
{
tmpbuf.clear();
tr_pex::to_compact_ipv6(std::back_inserter(tmpbuf), std::data(added6), std::size(added6));
TR_ASSERT(std::size(tmpbuf) == std::size(added6) * 18);
tr_variantDictAddRaw(&val, TR_KEY_added6, std::data(tmpbuf), std::size(tmpbuf));
// "added6.f"
// unset each holepunch flag because we don't support it.
tmpbuf.resize(std::size(added6));
auto* begin = std::data(tmpbuf);
auto* walk = begin;
for (auto const& p : added6)
{
*walk++ = std::byte{ p.flags } & ~std::byte{ ADDED_F_HOLEPUNCH };
}
TR_ASSERT(static_cast<size_t>(walk - begin) == std::size(added6));
tr_variantDictAddRaw(&val, TR_KEY_added6_f, begin, walk - begin);
}
if (!std::empty(dropped6))
{
// "dropped6"
tmpbuf.clear();
tr_pex::to_compact_ipv6(std::back_inserter(tmpbuf), std::data(dropped6), std::size(dropped6));
TR_ASSERT(std::size(tmpbuf) == std::size(dropped6) * 18);
tr_variantDictAddRaw(&val, TR_KEY_dropped6, std::data(tmpbuf), std::size(tmpbuf));
}
/* write the pex message */
auto payload = tr_variantToStr(&val, TR_VARIANT_FMT_BENC);
out.add_uint32(2 * sizeof(uint8_t) + std::size(payload));
out.add_uint8(BtPeerMsgs::Ltep);
out.add_uint8(this->ut_pex_id);
out.add(payload);
this->pokeBatchPeriod(HighPriorityIntervalSecs);
logtrace(this, fmt::format(FMT_STRING("sending a pex message; outMessage size is now {:d}"), std::size(out)));
this->dbgOutMessageLen();
tr_variantClear(&val);
}
} // namespace
tr_peerMsgs::~tr_peerMsgs()
{
[[maybe_unused]] auto const n_prev = n_peers--;
TR_ASSERT(n_prev > 0U);
}
tr_peerMsgs* tr_peerMsgsNew(
tr_torrent* torrent,
peer_atom* atom,
std::shared_ptr<tr_peerIo> io,
tr_peer_callback callback,
void* callback_data)
{
return new tr_peerMsgsImpl(torrent, atom, std::move(io), callback, callback_data);
}