transmission/third-party/libutp/templates.h

187 lines
5.2 KiB
C++

#ifndef __TEMPLATES_H__
#define __TEMPLATES_H__
#include "utypes.h"
#include <assert.h>
#if defined(POSIX)
/* Allow over-writing FORCEINLINE from makefile because gcc 3.4.4 for buffalo
doesn't seem to support __attribute__((always_inline)) in -O0 build
(strangely, it works in -Os build) */
#ifndef FORCEINLINE
// The always_inline attribute asks gcc to inline the function even if no optimization is being requested.
// This macro should be used exclusive-or with the inline directive (use one or the other but not both)
// since Microsoft uses __forceinline to also mean inline,
// and this code is following a Microsoft compatibility model.
// Just setting the attribute without also specifying the inline directive apparently won't inline the function,
// as evidenced by multiply-defined symbols found at link time.
#define FORCEINLINE inline __attribute__((always_inline))
#endif
#endif
#ifdef __GNUC__
// Used for gcc tool chains accepting but not supporting pragma pack
// See http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
#define PACKED_ATTRIBUTE __attribute__((__packed__))
#else
#define PACKED_ATTRIBUTE
#endif
#ifdef __GNUC__
#define ALIGNED_ATTRIBUTE(x) __attribute__((aligned (x)))
#else
#define ALIGNED_ATTRIBUTE(x)
#endif
// Utility templates
#undef min
#undef max
template <typename T> static inline T min(T a, T b) { if (a < b) return a; return b; }
template <typename T> static inline T max(T a, T b) { if (a > b) return a; return b; }
template <typename T> static inline T min(T a, T b, T c) { return min(min(a,b),c); }
template <typename T> static inline T max(T a, T b, T c) { return max(max(a,b),c); }
template <typename T> static inline T clamp(T v, T mi, T ma)
{
if (v > ma) v = ma;
if (v < mi) v = mi;
return v;
}
#if (defined(__SVR4) && defined(__sun))
#pragma pack(1)
#else
#pragma pack(push,1)
#endif
namespace aux
{
FORCEINLINE uint16 host_to_network(uint16 i) { return htons(i); }
FORCEINLINE uint32 host_to_network(uint32 i) { return htonl(i); }
FORCEINLINE int32 host_to_network(int32 i) { return htonl(i); }
FORCEINLINE uint16 network_to_host(uint16 i) { return ntohs(i); }
FORCEINLINE uint32 network_to_host(uint32 i) { return ntohl(i); }
FORCEINLINE int32 network_to_host(int32 i) { return ntohl(i); }
}
template <class T>
struct PACKED_ATTRIBUTE big_endian
{
T operator=(T i) { m_integer = aux::host_to_network(i); return i; }
operator T() const { return aux::network_to_host(m_integer); }
private:
T m_integer;
};
typedef big_endian<int32> int32_big;
typedef big_endian<uint32> uint32_big;
typedef big_endian<uint16> uint16_big;
#if (defined(__SVR4) && defined(__sun))
#pragma pack(0)
#else
#pragma pack(pop)
#endif
template<typename T> static inline void zeromem(T *a, size_t count = 1) { memset(a, 0, count * sizeof(T)); }
typedef int SortCompareProc(const void *, const void *);
template<typename T> static FORCEINLINE void QuickSortT(T *base, size_t num, int (*comp)(const T *, const T *)) { qsort(base, num, sizeof(T), (SortCompareProc*)comp); }
// WARNING: The template parameter MUST be a POD type!
template <typename T, size_t minsize = 16> class Array {
protected:
T *mem;
size_t alloc,count;
public:
Array(size_t init) { Init(init); }
Array() { Init(); }
~Array() { Free(); }
void inline Init() { mem = NULL; alloc = count = 0; }
void inline Init(size_t init) { Init(); if (init) Resize(init); }
size_t inline GetCount() const { return count; }
size_t inline GetAlloc() const { return alloc; }
void inline SetCount(size_t c) { count = c; }
inline T& operator[](size_t offset) { assert(offset ==0 || offset<alloc); return mem[offset]; }
inline const T& operator[](size_t offset) const { assert(offset ==0 || offset<alloc); return mem[offset]; }
void inline Resize(size_t a) {
if (a == 0) { free(mem); Init(); }
else { mem = (T*)realloc(mem, (alloc=a) * sizeof(T)); }
}
void Grow() { Resize(::max<size_t>(minsize, alloc * 2)); }
inline size_t Append(const T &t) {
if (count >= alloc) Grow();
size_t r=count++;
mem[r] = t;
return r;
}
T inline &Append() {
if (count >= alloc) Grow();
return mem[count++];
}
void inline Compact() {
Resize(count);
}
void inline Free() {
free(mem);
Init();
}
void inline Clear() {
count = 0;
}
bool inline MoveUpLast(size_t index) {
assert(index < count);
size_t c = --count;
if (index != c) {
mem[index] = mem[c];
return true;
}
return false;
}
bool inline MoveUpLastExist(const T &v) {
return MoveUpLast(LookupElementExist(v));
}
size_t inline LookupElement(const T &v) const {
for(size_t i = 0; i != count; i++)
if (mem[i] == v)
return i;
return (size_t) -1;
}
bool inline HasElement(const T &v) const {
return LookupElement(v) != -1;
}
typedef int SortCompareProc(const T *a, const T *b);
void Sort(SortCompareProc* proc, size_t start, size_t end) {
QuickSortT(&mem[start], end - start, proc);
}
void Sort(SortCompareProc* proc, size_t start) {
Sort(proc, start, count);
}
void Sort(SortCompareProc* proc) {
Sort(proc, 0, count);
}
};
#endif //__TEMPLATES_H__