1
0
Fork 0
mirror of https://github.com/transmission/transmission synced 2024-12-29 19:16:23 +00:00
transmission/libtransmission/peer-io.c
2019-07-14 16:25:07 +03:00

1425 lines
35 KiB
C

/*
* This file Copyright (C) 2007-2014 Mnemosyne LLC
*
* It may be used under the GNU GPL versions 2 or 3
* or any future license endorsed by Mnemosyne LLC.
*
*/
#include <errno.h>
#include <string.h>
#include <event2/event.h>
#include <event2/buffer.h>
#include <event2/bufferevent.h>
#include <libutp/utp.h>
#include "transmission.h"
#include "session.h"
#include "bandwidth.h"
#include "log.h"
#include "net.h"
#include "peer-common.h" /* MAX_BLOCK_SIZE */
#include "peer-io.h"
#include "tr-assert.h"
#include "tr-utp.h"
#include "trevent.h" /* tr_runInEventThread() */
#include "utils.h"
#ifdef _WIN32
#undef EAGAIN
#define EAGAIN WSAEWOULDBLOCK
#undef EINTR
#define EINTR WSAEINTR
#undef EINPROGRESS
#define EINPROGRESS WSAEINPROGRESS
#undef EPIPE
#define EPIPE WSAECONNRESET
#endif
/* The amount of read bufferring that we allow for uTP sockets. */
#define UTP_READ_BUFFER_SIZE (256 * 1024)
static size_t guessPacketOverhead(size_t d)
{
/**
* http://sd.wareonearth.com/~phil/net/overhead/
*
* TCP over Ethernet:
* Assuming no header compression (e.g. not PPP)
* Add 20 IPv4 header or 40 IPv6 header (no options)
* Add 20 TCP header
* Add 12 bytes optional TCP timestamps
* Max TCP Payload data rates over ethernet are thus:
* (1500-40)/ (38+1500) = 94.9285 % IPv4, minimal headers
* (1500-52)/ (38+1500) = 94.1482 % IPv4, TCP timestamps
* (1500-52)/ (42+1500) = 93.9040 % 802.1q, IPv4, TCP timestamps
* (1500-60)/ (38+1500) = 93.6281 % IPv6, minimal headers
* (1500-72)/ (38+1500) = 92.8479 % IPv6, TCP timestamps
* (1500-72)/ (42+1500) = 92.6070 % 802.1q, IPv6, ICP timestamps
*/
double const assumed_payload_data_rate = 94.0;
return (unsigned int)(d * (100.0 / assumed_payload_data_rate) - d);
}
/**
***
**/
#define dbgmsg(io, ...) tr_logAddDeepNamed(tr_peerIoGetAddrStr(io), __VA_ARGS__)
/**
***
**/
struct tr_datatype
{
struct tr_datatype* next;
size_t length;
bool isPieceData;
};
static struct tr_datatype* datatype_pool = NULL;
static struct tr_datatype const TR_DATATYPE_INIT =
{
.next = NULL,
.length = 0,
.isPieceData = false
};
static struct tr_datatype* datatype_new(void)
{
struct tr_datatype* ret;
if (datatype_pool == NULL)
{
ret = tr_new(struct tr_datatype, 1);
}
else
{
ret = datatype_pool;
datatype_pool = datatype_pool->next;
}
*ret = TR_DATATYPE_INIT;
return ret;
}
static void datatype_free(struct tr_datatype* datatype)
{
datatype->next = datatype_pool;
datatype_pool = datatype;
}
static void peer_io_pull_datatype(tr_peerIo* io)
{
struct tr_datatype* tmp;
if ((tmp = io->outbuf_datatypes) != NULL)
{
io->outbuf_datatypes = tmp->next;
datatype_free(tmp);
}
}
static void peer_io_push_datatype(tr_peerIo* io, struct tr_datatype* datatype)
{
struct tr_datatype* tmp;
if ((tmp = io->outbuf_datatypes) != NULL)
{
while (tmp->next != NULL)
{
tmp = tmp->next;
}
tmp->next = datatype;
}
else
{
io->outbuf_datatypes = datatype;
}
}
/***
****
***/
static void didWriteWrapper(tr_peerIo* io, unsigned int bytes_transferred)
{
while (bytes_transferred != 0 && tr_isPeerIo(io))
{
struct tr_datatype* next = io->outbuf_datatypes;
unsigned int const payload = MIN(next->length, bytes_transferred);
/* For uTP sockets, the overhead is computed in utp_on_overhead. */
unsigned int const overhead = io->socket.type == TR_PEER_SOCKET_TYPE_TCP ? guessPacketOverhead(payload) : 0;
uint64_t const now = tr_time_msec();
tr_bandwidthUsed(&io->bandwidth, TR_UP, payload, next->isPieceData, now);
if (overhead > 0)
{
tr_bandwidthUsed(&io->bandwidth, TR_UP, overhead, false, now);
}
if (io->didWrite != NULL)
{
io->didWrite(io, payload, next->isPieceData, io->userData);
}
if (tr_isPeerIo(io))
{
bytes_transferred -= payload;
next->length -= payload;
if (next->length == 0)
{
peer_io_pull_datatype(io);
}
}
}
}
static void canReadWrapper(tr_peerIo* io)
{
bool err = false;
bool done = false;
tr_session* session;
dbgmsg(io, "canRead");
tr_peerIoRef(io);
session = io->session;
/* try to consume the input buffer */
if (io->canRead != NULL)
{
uint64_t const now = tr_time_msec();
tr_sessionLock(session);
while (!done && !err)
{
size_t piece = 0;
size_t const oldLen = evbuffer_get_length(io->inbuf);
int const ret = io->canRead(io, io->userData, &piece);
size_t const used = oldLen - evbuffer_get_length(io->inbuf);
unsigned int const overhead = guessPacketOverhead(used);
if (piece != 0 || piece != used)
{
if (piece != 0)
{
tr_bandwidthUsed(&io->bandwidth, TR_DOWN, piece, true, now);
}
if (used != piece)
{
tr_bandwidthUsed(&io->bandwidth, TR_DOWN, used - piece, false, now);
}
}
if (overhead > 0)
{
tr_bandwidthUsed(&io->bandwidth, TR_UP, overhead, false, now);
}
switch (ret)
{
case READ_NOW:
if (evbuffer_get_length(io->inbuf) != 0)
{
continue;
}
done = true;
break;
case READ_LATER:
done = true;
break;
case READ_ERR:
err = true;
break;
}
TR_ASSERT(tr_isPeerIo(io));
}
tr_sessionUnlock(session);
}
tr_peerIoUnref(io);
}
static void event_read_cb(evutil_socket_t fd, short event UNUSED, void* vio)
{
tr_peerIo* io = vio;
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(io->socket.type == TR_PEER_SOCKET_TYPE_TCP);
int res;
int e;
/* Limit the input buffer to 256K, so it doesn't grow too large */
unsigned int howmuch;
unsigned int curlen;
tr_direction const dir = TR_DOWN;
unsigned int const max = 256 * 1024;
io->pendingEvents &= ~EV_READ;
curlen = evbuffer_get_length(io->inbuf);
howmuch = curlen >= max ? 0 : max - curlen;
howmuch = tr_bandwidthClamp(&io->bandwidth, TR_DOWN, howmuch);
dbgmsg(io, "libevent says this peer is ready to read");
/* if we don't have any bandwidth left, stop reading */
if (howmuch < 1)
{
tr_peerIoSetEnabled(io, dir, false);
return;
}
EVUTIL_SET_SOCKET_ERROR(0);
res = evbuffer_read(io->inbuf, fd, (int)howmuch);
e = EVUTIL_SOCKET_ERROR();
if (res > 0)
{
tr_peerIoSetEnabled(io, dir, true);
/* Invoke the user callback - must always be called last */
canReadWrapper(io);
}
else
{
char errstr[512];
short what = BEV_EVENT_READING;
if (res == 0) /* EOF */
{
what |= BEV_EVENT_EOF;
}
else if (res == -1)
{
if (e == EAGAIN || e == EINTR)
{
tr_peerIoSetEnabled(io, dir, true);
return;
}
what |= BEV_EVENT_ERROR;
}
dbgmsg(io, "event_read_cb got an error. res is %d, what is %hd, errno is %d (%s)", res, what, e,
tr_net_strerror(errstr, sizeof(errstr), e));
if (io->gotError != NULL)
{
io->gotError(io, what, io->userData);
}
}
}
static int tr_evbuffer_write(tr_peerIo* io, int fd, size_t howmuch)
{
int e;
int n;
char errstr[256];
EVUTIL_SET_SOCKET_ERROR(0);
n = evbuffer_write_atmost(io->outbuf, fd, howmuch);
e = EVUTIL_SOCKET_ERROR();
dbgmsg(io, "wrote %d to peer (%s)", n, (n == -1 ? tr_net_strerror(errstr, sizeof(errstr), e) : ""));
return n;
}
static void event_write_cb(evutil_socket_t fd, short event UNUSED, void* vio)
{
tr_peerIo* io = vio;
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(io->socket.type == TR_PEER_SOCKET_TYPE_TCP);
int res = 0;
int e;
short what = BEV_EVENT_WRITING;
size_t howmuch;
tr_direction const dir = TR_UP;
char errstr[1024];
io->pendingEvents &= ~EV_WRITE;
dbgmsg(io, "libevent says this peer is ready to write");
/* Write as much as possible, since the socket is non-blocking, write() will
* return if it can't write any more data without blocking */
howmuch = tr_bandwidthClamp(&io->bandwidth, dir, evbuffer_get_length(io->outbuf));
/* if we don't have any bandwidth left, stop writing */
if (howmuch < 1)
{
tr_peerIoSetEnabled(io, dir, false);
return;
}
EVUTIL_SET_SOCKET_ERROR(0);
res = tr_evbuffer_write(io, fd, howmuch);
e = EVUTIL_SOCKET_ERROR();
if (res == -1)
{
if (e == 0 || e == EAGAIN || e == EINTR || e == EINPROGRESS)
{
goto reschedule;
}
/* error case */
what |= BEV_EVENT_ERROR;
}
else if (res == 0)
{
/* eof case */
what |= BEV_EVENT_EOF;
}
if (res <= 0)
{
goto error;
}
if (evbuffer_get_length(io->outbuf) != 0)
{
tr_peerIoSetEnabled(io, dir, true);
}
didWriteWrapper(io, res);
return;
reschedule:
if (evbuffer_get_length(io->outbuf) != 0)
{
tr_peerIoSetEnabled(io, dir, true);
}
return;
error:
tr_net_strerror(errstr, sizeof(errstr), e);
dbgmsg(io, "event_write_cb got an error. res is %d, what is %hd, errno is %d (%s)", res, what, e, errstr);
if (io->gotError != NULL)
{
io->gotError(io, what, io->userData);
}
}
/**
***
**/
static void maybeSetCongestionAlgorithm(tr_socket_t socket, char const* algorithm)
{
if (!tr_str_is_empty(algorithm))
{
tr_netSetCongestionControl(socket, algorithm);
}
}
#ifdef WITH_UTP
/* UTP callbacks */
static void utp_on_read(void* closure, unsigned char const* buf, size_t buflen)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
int rc = evbuffer_add(io->inbuf, buf, buflen);
dbgmsg(io, "utp_on_read got %zu bytes", buflen);
if (rc < 0)
{
tr_logAddNamedError("UTP", "On read evbuffer_add");
return;
}
tr_peerIoSetEnabled(io, TR_DOWN, true);
canReadWrapper(io);
}
static void utp_on_write(void* closure, unsigned char* buf, size_t buflen)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
int rc = evbuffer_remove(io->outbuf, buf, buflen);
dbgmsg(io, "utp_on_write sending %zu bytes... evbuffer_remove returned %d", buflen, rc);
TR_ASSERT(rc == (int)buflen); /* if this fails, we've corrupted our bookkeeping somewhere */
if (rc < (long)buflen)
{
tr_logAddNamedError("UTP", "Short write: %d < %ld", rc, (long)buflen);
}
didWriteWrapper(io, buflen);
}
static size_t utp_get_rb_size(void* closure)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
size_t bytes = tr_bandwidthClamp(&io->bandwidth, TR_DOWN, UTP_READ_BUFFER_SIZE);
dbgmsg(io, "utp_get_rb_size is saying it's ready to read %zu bytes", bytes);
return UTP_READ_BUFFER_SIZE - bytes;
}
static int tr_peerIoTryWrite(tr_peerIo* io, size_t howmuch);
static void utp_on_writable(tr_peerIo* io)
{
int n;
dbgmsg(io, "libutp says this peer is ready to write");
n = tr_peerIoTryWrite(io, SIZE_MAX);
tr_peerIoSetEnabled(io, TR_UP, n != 0 && evbuffer_get_length(io->outbuf) != 0);
}
static void utp_on_state_change(void* closure, int state)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
if (state == UTP_STATE_CONNECT)
{
dbgmsg(io, "utp_on_state_change -- changed to connected");
io->utpSupported = true;
}
else if (state == UTP_STATE_WRITABLE)
{
dbgmsg(io, "utp_on_state_change -- changed to writable");
if ((io->pendingEvents & EV_WRITE) != 0)
{
utp_on_writable(io);
}
}
else if (state == UTP_STATE_EOF)
{
if (io->gotError != NULL)
{
io->gotError(io, BEV_EVENT_EOF, io->userData);
}
}
else if (state == UTP_STATE_DESTROYING)
{
tr_logAddNamedError("UTP", "Impossible state UTP_STATE_DESTROYING");
return;
}
else
{
tr_logAddNamedError("UTP", "Unknown state %d", state);
}
}
static void utp_on_error(void* closure, int errcode)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
dbgmsg(io, "utp_on_error -- errcode is %d", errcode);
if (io->gotError != NULL)
{
errno = errcode;
io->gotError(io, BEV_EVENT_ERROR, io->userData);
}
}
static void utp_on_overhead(void* closure, uint8_t /* bool */ send, size_t count, int type UNUSED)
{
tr_peerIo* io = closure;
TR_ASSERT(tr_isPeerIo(io));
dbgmsg(io, "utp_on_overhead -- count is %zu", count);
tr_bandwidthUsed(&io->bandwidth, send ? TR_UP : TR_DOWN, count, false, tr_time_msec());
}
static struct UTPFunctionTable utp_function_table =
{
.on_read = utp_on_read,
.on_write = utp_on_write,
.get_rb_size = utp_get_rb_size,
.on_state = utp_on_state_change,
.on_error = utp_on_error,
.on_overhead = utp_on_overhead
};
/* Dummy UTP callbacks. */
/* We switch a UTP socket to use these after the associated peerIo has been
destroyed -- see io_dtor. */
static void dummy_read(void* closure UNUSED, unsigned char const* buf UNUSED, size_t buflen UNUSED)
{
/* This cannot happen, as far as I'm aware. */
tr_logAddNamedError("UTP", "On_read called on closed socket");
}
static void dummy_write(void* closure UNUSED, unsigned char* buf, size_t buflen)
{
/* This can very well happen if we've shut down a peer connection that
had unflushed buffers. Complain and send zeroes. */
tr_logAddNamedDbg("UTP", "On_write called on closed socket");
memset(buf, 0, buflen);
}
static size_t dummy_get_rb_size(void* closure UNUSED)
{
return 0;
}
static void dummy_on_state_change(void* closure UNUSED, int state UNUSED)
{
}
static void dummy_on_error(void* closure UNUSED, int errcode UNUSED)
{
}
static void dummy_on_overhead(void* closure UNUSED, uint8_t /* bool */ send UNUSED, size_t count UNUSED, int type UNUSED)
{
}
static struct UTPFunctionTable dummy_utp_function_table =
{
.on_read = dummy_read,
.on_write = dummy_write,
.get_rb_size = dummy_get_rb_size,
.on_state = dummy_on_state_change,
.on_error = dummy_on_error,
.on_overhead = dummy_on_overhead
};
#endif /* #ifdef WITH_UTP */
static tr_peerIo* tr_peerIoNew(tr_session* session, tr_bandwidth* parent, tr_address const* addr, tr_port port,
uint8_t const* torrentHash, bool isIncoming, bool isSeed, struct tr_peer_socket const socket)
{
TR_ASSERT(session != NULL);
TR_ASSERT(session->events != NULL);
TR_ASSERT(tr_amInEventThread(session));
#ifdef WITH_UTP
TR_ASSERT(socket.type == TR_PEER_SOCKET_TYPE_TCP || socket.type == TR_PEER_SOCKET_TYPE_UTP);
#else
TR_ASSERT(socket.type == TR_PEER_SOCKET_TYPE_TCP);
#endif
if (socket.type == TR_PEER_SOCKET_TYPE_TCP)
{
tr_netSetTOS(socket.handle.tcp, session->peerSocketTOS, addr->type);
maybeSetCongestionAlgorithm(socket.handle.tcp, session->peer_congestion_algorithm);
}
tr_peerIo* io = tr_new0(tr_peerIo, 1);
io->magicNumber = PEER_IO_MAGIC_NUMBER;
io->refCount = 1;
tr_cryptoConstruct(&io->crypto, torrentHash, isIncoming);
io->session = session;
io->addr = *addr;
io->isSeed = isSeed;
io->port = port;
io->socket = socket;
io->isIncoming = isIncoming;
io->timeCreated = tr_time();
io->inbuf = evbuffer_new();
io->outbuf = evbuffer_new();
tr_bandwidthConstruct(&io->bandwidth, session, parent);
tr_bandwidthSetPeer(&io->bandwidth, io);
dbgmsg(io, "bandwidth is %p; its parent is %p", (void*)&io->bandwidth, (void*)parent);
switch (socket.type)
{
case TR_PEER_SOCKET_TYPE_TCP:
dbgmsg(io, "socket (tcp) is %" PRIdMAX, (intmax_t)socket.handle.tcp);
io->event_read = event_new(session->event_base, socket.handle.tcp, EV_READ, event_read_cb, io);
io->event_write = event_new(session->event_base, socket.handle.tcp, EV_WRITE, event_write_cb, io);
break;
#ifdef WITH_UTP
case TR_PEER_SOCKET_TYPE_UTP:
dbgmsg(io, "socket (utp) is %p", (void*)socket.handle.utp);
UTP_SetSockopt(socket.handle.utp, SO_RCVBUF, UTP_READ_BUFFER_SIZE);
dbgmsg(io, "%s", "calling UTP_SetCallbacks &utp_function_table");
UTP_SetCallbacks(socket.handle.utp, &utp_function_table, io);
if (!isIncoming)
{
dbgmsg(io, "%s", "calling UTP_Connect");
UTP_Connect(socket.handle.utp);
}
break;
#endif
default:
TR_ASSERT_MSG(false, "unsupported peer socket type %d", socket.type);
}
return io;
}
tr_peerIo* tr_peerIoNewIncoming(tr_session* session, tr_bandwidth* parent, tr_address const* addr, tr_port port,
struct tr_peer_socket const socket)
{
TR_ASSERT(session != NULL);
TR_ASSERT(tr_address_is_valid(addr));
return tr_peerIoNew(session, parent, addr, port, NULL, true, false, socket);
}
tr_peerIo* tr_peerIoNewOutgoing(tr_session* session, tr_bandwidth* parent, tr_address const* addr, tr_port port,
uint8_t const* torrentHash, bool isSeed, bool utp)
{
TR_ASSERT(session != NULL);
TR_ASSERT(tr_address_is_valid(addr));
TR_ASSERT(torrentHash != NULL);
struct tr_peer_socket socket = TR_PEER_SOCKET_INIT;
if (utp)
{
socket = tr_netOpenPeerUTPSocket(session, addr, port, isSeed);
}
if (socket.type == TR_PEER_SOCKET_TYPE_NONE)
{
socket = tr_netOpenPeerSocket(session, addr, port, isSeed);
dbgmsg(NULL, "tr_netOpenPeerSocket returned fd %" PRIdMAX, (intmax_t)(socket.type != TR_PEER_SOCKET_TYPE_NONE ?
socket.handle.tcp : TR_BAD_SOCKET));
}
if (socket.type == TR_PEER_SOCKET_TYPE_NONE)
{
return NULL;
}
return tr_peerIoNew(session, parent, addr, port, torrentHash, false, isSeed, socket);
}
/***
****
***/
static void event_enable(tr_peerIo* io, short event)
{
TR_ASSERT(tr_amInEventThread(io->session));
TR_ASSERT(io->session != NULL);
TR_ASSERT(io->session->events != NULL);
bool const need_events = io->socket.type == TR_PEER_SOCKET_TYPE_TCP;
if (need_events)
{
TR_ASSERT(event_initialized(io->event_read));
TR_ASSERT(event_initialized(io->event_write));
}
if ((event & EV_READ) != 0 && (io->pendingEvents & EV_READ) == 0)
{
dbgmsg(io, "enabling ready-to-read polling");
if (need_events)
{
event_add(io->event_read, NULL);
}
io->pendingEvents |= EV_READ;
}
if ((event & EV_WRITE) != 0 && (io->pendingEvents & EV_WRITE) == 0)
{
dbgmsg(io, "enabling ready-to-write polling");
if (need_events)
{
event_add(io->event_write, NULL);
}
io->pendingEvents |= EV_WRITE;
}
}
static void event_disable(struct tr_peerIo* io, short event)
{
TR_ASSERT(tr_amInEventThread(io->session));
TR_ASSERT(io->session != NULL);
TR_ASSERT(io->session->events != NULL);
bool const need_events = io->socket.type == TR_PEER_SOCKET_TYPE_TCP;
if (need_events)
{
TR_ASSERT(event_initialized(io->event_read));
TR_ASSERT(event_initialized(io->event_write));
}
if ((event & EV_READ) != 0 && (io->pendingEvents & EV_READ) != 0)
{
dbgmsg(io, "disabling ready-to-read polling");
if (need_events)
{
event_del(io->event_read);
}
io->pendingEvents &= ~EV_READ;
}
if ((event & EV_WRITE) != 0 && (io->pendingEvents & EV_WRITE) != 0)
{
dbgmsg(io, "disabling ready-to-write polling");
if (need_events)
{
event_del(io->event_write);
}
io->pendingEvents &= ~EV_WRITE;
}
}
void tr_peerIoSetEnabled(tr_peerIo* io, tr_direction dir, bool isEnabled)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(tr_isDirection(dir));
TR_ASSERT(tr_amInEventThread(io->session));
TR_ASSERT(io->session->events != NULL);
short const event = dir == TR_UP ? EV_WRITE : EV_READ;
if (isEnabled)
{
event_enable(io, event);
}
else
{
event_disable(io, event);
}
}
/***
****
***/
static void io_close_socket(tr_peerIo* io)
{
switch (io->socket.type)
{
case TR_PEER_SOCKET_TYPE_NONE:
break;
case TR_PEER_SOCKET_TYPE_TCP:
tr_netClose(io->session, io->socket.handle.tcp);
break;
#ifdef WITH_UTP
case TR_PEER_SOCKET_TYPE_UTP:
UTP_SetCallbacks(io->socket.handle.utp, &dummy_utp_function_table, NULL);
UTP_Close(io->socket.handle.utp);
break;
#endif
default:
TR_ASSERT_MSG(false, "unsupported peer socket type %d", io->socket.type);
}
io->socket = TR_PEER_SOCKET_INIT;
if (io->event_read != NULL)
{
event_free(io->event_read);
io->event_read = NULL;
}
if (io->event_write != NULL)
{
event_free(io->event_write);
io->event_write = NULL;
}
}
static void io_dtor(void* vio)
{
tr_peerIo* io = vio;
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(tr_amInEventThread(io->session));
TR_ASSERT(io->session->events != NULL);
dbgmsg(io, "in tr_peerIo destructor");
event_disable(io, EV_READ | EV_WRITE);
tr_bandwidthDestruct(&io->bandwidth);
evbuffer_free(io->outbuf);
evbuffer_free(io->inbuf);
io_close_socket(io);
tr_cryptoDestruct(&io->crypto);
while (io->outbuf_datatypes != NULL)
{
peer_io_pull_datatype(io);
}
memset(io, ~0, sizeof(tr_peerIo));
tr_free(io);
}
static void tr_peerIoFree(tr_peerIo* io)
{
if (io != NULL)
{
dbgmsg(io, "in tr_peerIoFree");
io->canRead = NULL;
io->didWrite = NULL;
io->gotError = NULL;
tr_runInEventThread(io->session, io_dtor, io);
}
}
void tr_peerIoRefImpl(char const* file, int line, tr_peerIo* io)
{
TR_ASSERT(tr_isPeerIo(io));
dbgmsg(io, "%s:%d is incrementing the IO's refcount from %d to %d", file, line, io->refCount, io->refCount + 1);
++io->refCount;
}
void tr_peerIoUnrefImpl(char const* file, int line, tr_peerIo* io)
{
TR_ASSERT(tr_isPeerIo(io));
dbgmsg(io, "%s:%d is decrementing the IO's refcount from %d to %d", file, line, io->refCount, io->refCount - 1);
if (--io->refCount == 0)
{
tr_peerIoFree(io);
}
}
tr_address const* tr_peerIoGetAddress(tr_peerIo const* io, tr_port* port)
{
TR_ASSERT(tr_isPeerIo(io));
if (port != NULL)
{
*port = io->port;
}
return &io->addr;
}
char const* tr_peerIoAddrStr(tr_address const* addr, tr_port port)
{
static char buf[512];
tr_snprintf(buf, sizeof(buf), "[%s]:%u", tr_address_to_string(addr), ntohs(port));
return buf;
}
char const* tr_peerIoGetAddrStr(tr_peerIo const* io)
{
return tr_isPeerIo(io) ? tr_peerIoAddrStr(&io->addr, io->port) : "error";
}
void tr_peerIoSetIOFuncs(tr_peerIo* io, tr_can_read_cb readcb, tr_did_write_cb writecb, tr_net_error_cb errcb, void* userData)
{
io->canRead = readcb;
io->didWrite = writecb;
io->gotError = errcb;
io->userData = userData;
}
void tr_peerIoClear(tr_peerIo* io)
{
tr_peerIoSetIOFuncs(io, NULL, NULL, NULL, NULL);
tr_peerIoSetEnabled(io, TR_UP, false);
tr_peerIoSetEnabled(io, TR_DOWN, false);
}
int tr_peerIoReconnect(tr_peerIo* io)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(!tr_peerIoIsIncoming(io));
tr_session* session = tr_peerIoGetSession(io);
short int pendingEvents = io->pendingEvents;
event_disable(io, EV_READ | EV_WRITE);
io_close_socket(io);
io->socket = tr_netOpenPeerSocket(session, &io->addr, io->port, io->isSeed);
if (io->socket.type != TR_PEER_SOCKET_TYPE_TCP)
{
return -1;
}
io->event_read = event_new(session->event_base, io->socket.handle.tcp, EV_READ, event_read_cb, io);
io->event_write = event_new(session->event_base, io->socket.handle.tcp, EV_WRITE, event_write_cb, io);
event_enable(io, pendingEvents);
tr_netSetTOS(io->socket.handle.tcp, session->peerSocketTOS, io->addr.type);
maybeSetCongestionAlgorithm(io->socket.handle.tcp, session->peer_congestion_algorithm);
return 0;
}
/**
***
**/
void tr_peerIoSetTorrentHash(tr_peerIo* io, uint8_t const* hash)
{
TR_ASSERT(tr_isPeerIo(io));
tr_cryptoSetTorrentHash(&io->crypto, hash);
}
uint8_t const* tr_peerIoGetTorrentHash(tr_peerIo* io)
{
TR_ASSERT(tr_isPeerIo(io));
return tr_cryptoGetTorrentHash(&io->crypto);
}
bool tr_peerIoHasTorrentHash(tr_peerIo const* io)
{
TR_ASSERT(tr_isPeerIo(io));
return tr_cryptoHasTorrentHash(&io->crypto);
}
/**
***
**/
void tr_peerIoSetPeersId(tr_peerIo* io, uint8_t const* peer_id)
{
TR_ASSERT(tr_isPeerIo(io));
if ((io->peerIdIsSet = peer_id != NULL))
{
memcpy(io->peerId, peer_id, 20);
}
else
{
memset(io->peerId, '\0', 20);
}
}
/**
***
**/
static unsigned int getDesiredOutputBufferSize(tr_peerIo const* io, uint64_t now)
{
/* this is all kind of arbitrary, but what seems to work well is
* being large enough to hold the next 20 seconds' worth of input,
* or a few blocks, whichever is bigger.
* It's okay to tweak this as needed */
unsigned int const currentSpeed_Bps = tr_bandwidthGetPieceSpeed_Bps(&io->bandwidth, now, TR_UP);
unsigned int const period = 15U; /* arbitrary */
/* the 3 is arbitrary; the .5 is to leave room for messages */
static unsigned int const ceiling = (unsigned int)(MAX_BLOCK_SIZE * 3.5);
return MAX(ceiling, currentSpeed_Bps * period);
}
size_t tr_peerIoGetWriteBufferSpace(tr_peerIo const* io, uint64_t now)
{
size_t const desiredLen = getDesiredOutputBufferSize(io, now);
size_t const currentLen = evbuffer_get_length(io->outbuf);
size_t freeSpace = 0;
if (desiredLen > currentLen)
{
freeSpace = desiredLen - currentLen;
}
return freeSpace;
}
/**
***
**/
void tr_peerIoSetEncryption(tr_peerIo* io, tr_encryption_type encryption_type)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(encryption_type == PEER_ENCRYPTION_NONE || encryption_type == PEER_ENCRYPTION_RC4);
io->encryption_type = encryption_type;
}
/**
***
**/
static inline void processBuffer(tr_crypto* crypto, struct evbuffer* buffer, size_t offset, size_t size, void (* callback)(
tr_crypto*, size_t, void const*, void*))
{
struct evbuffer_ptr pos;
struct evbuffer_iovec iovec;
evbuffer_ptr_set(buffer, &pos, offset, EVBUFFER_PTR_SET);
do
{
if (evbuffer_peek(buffer, size, &pos, &iovec, 1) <= 0)
{
break;
}
callback(crypto, iovec.iov_len, iovec.iov_base, iovec.iov_base);
TR_ASSERT(size >= iovec.iov_len);
size -= iovec.iov_len;
}
while (evbuffer_ptr_set(buffer, &pos, iovec.iov_len, EVBUFFER_PTR_ADD) == 0);
TR_ASSERT(size == 0);
}
static void addDatatype(tr_peerIo* io, size_t byteCount, bool isPieceData)
{
struct tr_datatype* d;
d = datatype_new();
d->isPieceData = isPieceData;
d->length = byteCount;
peer_io_push_datatype(io, d);
}
static inline void maybeEncryptBuffer(tr_peerIo* io, struct evbuffer* buf, size_t offset, size_t size)
{
if (io->encryption_type == PEER_ENCRYPTION_RC4)
{
processBuffer(&io->crypto, buf, offset, size, &tr_cryptoEncrypt);
}
}
void tr_peerIoWriteBuf(tr_peerIo* io, struct evbuffer* buf, bool isPieceData)
{
size_t const byteCount = evbuffer_get_length(buf);
maybeEncryptBuffer(io, buf, 0, byteCount);
evbuffer_add_buffer(io->outbuf, buf);
addDatatype(io, byteCount, isPieceData);
}
void tr_peerIoWriteBytes(tr_peerIo* io, void const* bytes, size_t byteCount, bool isPieceData)
{
struct evbuffer_iovec iovec;
evbuffer_reserve_space(io->outbuf, byteCount, &iovec, 1);
iovec.iov_len = byteCount;
if (io->encryption_type == PEER_ENCRYPTION_RC4)
{
tr_cryptoEncrypt(&io->crypto, iovec.iov_len, bytes, iovec.iov_base);
}
else
{
memcpy(iovec.iov_base, bytes, iovec.iov_len);
}
evbuffer_commit_space(io->outbuf, &iovec, 1);
addDatatype(io, byteCount, isPieceData);
}
/***
****
***/
void evbuffer_add_uint8(struct evbuffer* outbuf, uint8_t byte)
{
evbuffer_add(outbuf, &byte, 1);
}
void evbuffer_add_uint16(struct evbuffer* outbuf, uint16_t addme_hs)
{
uint16_t const ns = htons(addme_hs);
evbuffer_add(outbuf, &ns, sizeof(ns));
}
void evbuffer_add_uint32(struct evbuffer* outbuf, uint32_t addme_hl)
{
uint32_t const nl = htonl(addme_hl);
evbuffer_add(outbuf, &nl, sizeof(nl));
}
void evbuffer_add_uint64(struct evbuffer* outbuf, uint64_t addme_hll)
{
uint64_t const nll = tr_htonll(addme_hll);
evbuffer_add(outbuf, &nll, sizeof(nll));
}
/***
****
***/
static inline void maybeDecryptBuffer(tr_peerIo* io, struct evbuffer* buf, size_t offset, size_t size)
{
if (io->encryption_type == PEER_ENCRYPTION_RC4)
{
processBuffer(&io->crypto, buf, offset, size, &tr_cryptoDecrypt);
}
}
void tr_peerIoReadBytesToBuf(tr_peerIo* io, struct evbuffer* inbuf, struct evbuffer* outbuf, size_t byteCount)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(evbuffer_get_length(inbuf) >= byteCount);
size_t const old_length = evbuffer_get_length(outbuf);
/* append it to outbuf */
struct evbuffer* tmp = evbuffer_new();
evbuffer_remove_buffer(inbuf, tmp, byteCount);
evbuffer_add_buffer(outbuf, tmp);
evbuffer_free(tmp);
maybeDecryptBuffer(io, outbuf, old_length, byteCount);
}
void tr_peerIoReadBytes(tr_peerIo* io, struct evbuffer* inbuf, void* bytes, size_t byteCount)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(evbuffer_get_length(inbuf) >= byteCount);
switch (io->encryption_type)
{
case PEER_ENCRYPTION_NONE:
evbuffer_remove(inbuf, bytes, byteCount);
break;
case PEER_ENCRYPTION_RC4:
evbuffer_remove(inbuf, bytes, byteCount);
tr_cryptoDecrypt(&io->crypto, byteCount, bytes, bytes);
break;
default:
TR_ASSERT_MSG(false, "unhandled encryption type %d", (int)io->encryption_type);
}
}
void tr_peerIoReadUint16(tr_peerIo* io, struct evbuffer* inbuf, uint16_t* setme)
{
uint16_t tmp;
tr_peerIoReadBytes(io, inbuf, &tmp, sizeof(uint16_t));
*setme = ntohs(tmp);
}
void tr_peerIoReadUint32(tr_peerIo* io, struct evbuffer* inbuf, uint32_t* setme)
{
uint32_t tmp;
tr_peerIoReadBytes(io, inbuf, &tmp, sizeof(uint32_t));
*setme = ntohl(tmp);
}
void tr_peerIoDrain(tr_peerIo* io, struct evbuffer* inbuf, size_t byteCount)
{
char buf[4096];
size_t const buflen = sizeof(buf);
while (byteCount > 0)
{
size_t const thisPass = MIN(byteCount, buflen);
tr_peerIoReadBytes(io, inbuf, buf, thisPass);
byteCount -= thisPass;
}
}
/***
****
***/
static int tr_peerIoTryRead(tr_peerIo* io, size_t howmuch)
{
int res = 0;
if ((howmuch = tr_bandwidthClamp(&io->bandwidth, TR_DOWN, howmuch)) != 0)
{
switch (io->socket.type)
{
case TR_PEER_SOCKET_TYPE_UTP:
/* UTP_RBDrained notifies libutp that your read buffer is emtpy.
* It opens up the congestion window by sending an ACK (soonish)
* if one was not going to be sent. */
if (evbuffer_get_length(io->inbuf) == 0)
{
UTP_RBDrained(io->socket.handle.utp);
}
break;
case TR_PEER_SOCKET_TYPE_TCP:
{
int e;
char err_buf[512];
EVUTIL_SET_SOCKET_ERROR(0);
res = evbuffer_read(io->inbuf, io->socket.handle.tcp, (int)howmuch);
e = EVUTIL_SOCKET_ERROR();
dbgmsg(io, "read %d from peer (%s)", res, res == -1 ? tr_net_strerror(err_buf, sizeof(err_buf), e) : "");
if (evbuffer_get_length(io->inbuf) != 0)
{
canReadWrapper(io);
}
if (res <= 0 && io->gotError != NULL && e != EAGAIN && e != EINTR && e != EINPROGRESS)
{
short what = BEV_EVENT_READING | BEV_EVENT_ERROR;
if (res == 0)
{
what |= BEV_EVENT_EOF;
}
dbgmsg(io, "tr_peerIoTryRead got an error. res is %d, what is %hd, errno is %d (%s)", res, what, e,
tr_net_strerror(err_buf, sizeof(err_buf), e));
io->gotError(io, what, io->userData);
}
break;
}
default:
TR_ASSERT_MSG(false, "unsupported peer socket type %d", io->socket.type);
}
}
return res;
}
static int tr_peerIoTryWrite(tr_peerIo* io, size_t howmuch)
{
int n = 0;
size_t const old_len = evbuffer_get_length(io->outbuf);
dbgmsg(io, "in tr_peerIoTryWrite %zu", howmuch);
if (howmuch > old_len)
{
howmuch = old_len;
}
if ((howmuch = tr_bandwidthClamp(&io->bandwidth, TR_UP, howmuch)) != 0)
{
switch (io->socket.type)
{
case TR_PEER_SOCKET_TYPE_UTP:
UTP_Write(io->socket.handle.utp, howmuch);
n = old_len - evbuffer_get_length(io->outbuf);
break;
case TR_PEER_SOCKET_TYPE_TCP:
{
int e;
EVUTIL_SET_SOCKET_ERROR(0);
n = tr_evbuffer_write(io, io->socket.handle.tcp, howmuch);
e = EVUTIL_SOCKET_ERROR();
if (n > 0)
{
didWriteWrapper(io, n);
}
if (n < 0 && io->gotError != NULL && e != 0 && e != EPIPE && e != EAGAIN && e != EINTR && e != EINPROGRESS)
{
char errstr[512];
short const what = BEV_EVENT_WRITING | BEV_EVENT_ERROR;
dbgmsg(io, "tr_peerIoTryWrite got an error. res is %d, what is %hd, errno is %d (%s)", n, what, e,
tr_net_strerror(errstr, sizeof(errstr), e));
io->gotError(io, what, io->userData);
}
break;
}
default:
TR_ASSERT_MSG(false, "unsupported peer socket type %d", io->socket.type);
}
}
return n;
}
int tr_peerIoFlush(tr_peerIo* io, tr_direction dir, size_t limit)
{
TR_ASSERT(tr_isPeerIo(io));
TR_ASSERT(tr_isDirection(dir));
int bytesUsed = 0;
if (dir == TR_DOWN)
{
bytesUsed = tr_peerIoTryRead(io, limit);
}
else
{
bytesUsed = tr_peerIoTryWrite(io, limit);
}
dbgmsg(io, "flushing peer-io, direction %d, limit %zu, bytesUsed %d", (int)dir, limit, bytesUsed);
return bytesUsed;
}
int tr_peerIoFlushOutgoingProtocolMsgs(tr_peerIo* io)
{
size_t byteCount = 0;
/* count up how many bytes are used by non-piece-data messages
at the front of our outbound queue */
for (struct tr_datatype const* it = io->outbuf_datatypes; it != NULL; it = it->next)
{
if (it->isPieceData)
{
break;
}
else
{
byteCount += it->length;
}
}
return tr_peerIoFlush(io, TR_UP, byteCount);
}