1
0
Fork 0
mirror of https://github.com/morpheus65535/bazarr synced 2025-01-03 05:25:28 +00:00
bazarr/libs/textdistance/algorithms/edit_based.py
JayZed eb296e13c1
Improved global search function
* Use Hamming textdistance library

Used Hamming textdistance to sort by closest match.

* Global search UI improvements

Increased dropdown height to show more results initially (and which can also be scrolled into view).
Scrollbars will appear automatically as needed.
Remove dropdown when Search box is cleared.

* Added textdistance 4.6.2 library
2024-06-08 06:14:39 -04:00

847 lines
27 KiB
Python

from __future__ import annotations
# built-in
from collections import defaultdict
from itertools import zip_longest
from typing import Any, Sequence, TypeVar
# app
from .base import Base as _Base, BaseSimilarity as _BaseSimilarity
from .types import SimFunc, TestFunc
try:
# external
import numpy
except ImportError:
numpy = None # type: ignore[assignment]
__all__ = [
'Hamming', 'MLIPNS',
'Levenshtein', 'DamerauLevenshtein',
'Jaro', 'JaroWinkler', 'StrCmp95',
'NeedlemanWunsch', 'Gotoh', 'SmithWaterman',
'hamming', 'mlipns',
'levenshtein', 'damerau_levenshtein',
'jaro', 'jaro_winkler', 'strcmp95',
'needleman_wunsch', 'gotoh', 'smith_waterman',
]
T = TypeVar('T')
class Hamming(_Base):
"""
Compute the Hamming distance between the two or more sequences.
The Hamming distance is the number of differing items in ordered sequences.
https://en.wikipedia.org/wiki/Hamming_distance
"""
def __init__(
self,
qval: int = 1,
test_func: TestFunc | None = None,
truncate: bool = False,
external: bool = True,
) -> None:
self.qval = qval
self.test_func = test_func or self._ident
self.truncate = truncate
self.external = external
def __call__(self, *sequences: Sequence[object]) -> int:
sequences = self._get_sequences(*sequences)
result = self.quick_answer(*sequences)
if result is not None:
assert isinstance(result, int)
return result
_zip = zip if self.truncate else zip_longest
return sum(not self.test_func(*es) for es in _zip(*sequences))
class Levenshtein(_Base):
"""
Compute the absolute Levenshtein distance between the two sequences.
The Levenshtein distance is the minimum number of edit operations necessary
for transforming one sequence into the other. The edit operations allowed are:
* deletion: ABC -> BC, AC, AB
* insertion: ABC -> ABCD, EABC, AEBC..
* substitution: ABC -> ABE, ADC, FBC..
https://en.wikipedia.org/wiki/Levenshtein_distance
TODO: https://gist.github.com/kylebgorman/1081951/9b38b7743a3cb5167ab2c6608ac8eea7fc629dca
"""
def __init__(
self,
qval: int = 1,
test_func: TestFunc | None = None,
external: bool = True,
) -> None:
self.qval = qval
self.test_func = test_func or self._ident
self.external = external
def _recursive(self, s1: Sequence[T], s2: Sequence[T]) -> int:
# TODO: more than 2 sequences support
if not s1 or not s2:
return len(s1) + len(s2)
if self.test_func(s1[-1], s2[-1]):
return self(s1[:-1], s2[:-1])
# deletion/insertion
d = min(
self(s1[:-1], s2),
self(s1, s2[:-1]),
)
# substitution
s = self(s1[:-1], s2[:-1])
return min(d, s) + 1
def _cycled(self, s1: Sequence[T], s2: Sequence[T]) -> int:
"""
source:
https://github.com/jamesturk/jellyfish/blob/master/jellyfish/_jellyfish.py#L18
"""
rows = len(s1) + 1
cols = len(s2) + 1
prev = None
cur: Any
if numpy:
cur = numpy.arange(cols)
else:
cur = range(cols)
for r in range(1, rows):
prev, cur = cur, [r] + [0] * (cols - 1)
for c in range(1, cols):
deletion = prev[c] + 1
insertion = cur[c - 1] + 1
dist = self.test_func(s1[r - 1], s2[c - 1])
edit = prev[c - 1] + (not dist)
cur[c] = min(edit, deletion, insertion)
return int(cur[-1])
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
s1, s2 = self._get_sequences(s1, s2)
result = self.quick_answer(s1, s2)
if result is not None:
assert isinstance(result, int)
return result
return self._cycled(s1, s2)
class DamerauLevenshtein(_Base):
"""
Compute the absolute Damerau-Levenshtein distance between the two sequences.
The Damerau-Levenshtein distance is the minimum number of edit operations necessary
for transforming one sequence into the other. The edit operations allowed are:
* deletion: ABC -> BC, AC, AB
* insertion: ABC -> ABCD, EABC, AEBC..
* substitution: ABC -> ABE, ADC, FBC..
* transposition: ABC -> ACB, BAC
If `restricted=False`, it will calculate unrestricted distance,
where the same character can be touched more than once.
So the distance between BA and ACB is 2: BA -> AB -> ACB.
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
"""
def __init__(
self,
qval: int = 1,
test_func: TestFunc | None = None,
external: bool = True,
restricted: bool = True,
) -> None:
self.qval = qval
self.test_func = test_func or self._ident
self.external = external
self.restricted = restricted
def _numpy(self, s1: Sequence[T], s2: Sequence[T]) -> int:
# TODO: doesn't pass tests, need improve
d = numpy.zeros([len(s1) + 1, len(s2) + 1], dtype=int)
# matrix
for i in range(-1, len(s1) + 1):
d[i][-1] = i + 1
for j in range(-1, len(s2) + 1):
d[-1][j] = j + 1
for i, cs1 in enumerate(s1):
for j, cs2 in enumerate(s2):
cost = int(not self.test_func(cs1, cs2))
# ^ 0 if equal, 1 otherwise
d[i][j] = min(
d[i - 1][j] + 1, # deletion
d[i][j - 1] + 1, # insertion
d[i - 1][j - 1] + cost, # substitution
)
# transposition
if not i or not j:
continue
if not self.test_func(cs1, s2[j - 1]):
continue
d[i][j] = min(
d[i][j],
d[i - 2][j - 2] + cost,
)
return d[len(s1) - 1][len(s2) - 1]
def _pure_python_unrestricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
"""https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
"""
d: dict[tuple[int, int], int] = {}
da: dict[T, int] = {}
len1 = len(s1)
len2 = len(s2)
maxdist = len1 + len2
d[-1, -1] = maxdist
# matrix
for i in range(len(s1) + 1):
d[i, -1] = maxdist
d[i, 0] = i
for j in range(len(s2) + 1):
d[-1, j] = maxdist
d[0, j] = j
for i, cs1 in enumerate(s1, start=1):
db = 0
for j, cs2 in enumerate(s2, start=1):
i1 = da.get(cs2, 0)
j1 = db
if self.test_func(cs1, cs2):
cost = 0
db = j
else:
cost = 1
d[i, j] = min(
d[i - 1, j - 1] + cost, # substitution
d[i, j - 1] + 1, # insertion
d[i - 1, j] + 1, # deletion
d[i1 - 1, j1 - 1] + (i - i1) - 1 + (j - j1), # transposition
)
da[cs1] = i
return d[len1, len2]
def _pure_python_restricted(self, s1: Sequence[T], s2: Sequence[T]) -> int:
"""
https://www.guyrutenberg.com/2008/12/15/damerau-levenshtein-distance-in-python/
"""
d: dict[tuple[int, int], int] = {}
# matrix
for i in range(-1, len(s1) + 1):
d[i, -1] = i + 1
for j in range(-1, len(s2) + 1):
d[-1, j] = j + 1
for i, cs1 in enumerate(s1):
for j, cs2 in enumerate(s2):
cost = int(not self.test_func(cs1, cs2))
# ^ 0 if equal, 1 otherwise
d[i, j] = min(
d[i - 1, j] + 1, # deletion
d[i, j - 1] + 1, # insertion
d[i - 1, j - 1] + cost, # substitution
)
# transposition
if not i or not j:
continue
if not self.test_func(cs1, s2[j - 1]):
continue
if not self.test_func(s1[i - 1], cs2):
continue
d[i, j] = min(
d[i, j],
d[i - 2, j - 2] + cost,
)
return d[len(s1) - 1, len(s2) - 1]
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> int:
s1, s2 = self._get_sequences(s1, s2)
result = self.quick_answer(s1, s2)
if result is not None:
return result # type: ignore[return-value]
# if numpy:
# return self._numpy(s1, s2)
# else:
if self.restricted:
return self._pure_python_restricted(s1, s2)
return self._pure_python_unrestricted(s1, s2)
class JaroWinkler(_BaseSimilarity):
"""
Computes the Jaro-Winkler measure between two strings.
The Jaro-Winkler measure is designed to capture cases where two strings
have a low Jaro score, but share a prefix.
and thus are likely to match.
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro.js
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/jaro-winkler.js
"""
def __init__(
self,
long_tolerance: bool = False,
winklerize: bool = True,
qval: int = 1,
external: bool = True,
) -> None:
self.qval = qval
self.long_tolerance = long_tolerance
self.winklerize = winklerize
self.external = external
def maximum(self, *sequences: Sequence[object]) -> int:
return 1
def __call__(self, s1: Sequence[T], s2: Sequence[T], prefix_weight: float = 0.1) -> float:
s1, s2 = self._get_sequences(s1, s2)
result = self.quick_answer(s1, s2)
if result is not None:
return result
s1_len = len(s1)
s2_len = len(s2)
if not s1_len or not s2_len:
return 0.0
min_len = min(s1_len, s2_len)
search_range = max(s1_len, s2_len)
search_range = (search_range // 2) - 1
if search_range < 0:
search_range = 0
s1_flags = [False] * s1_len
s2_flags = [False] * s2_len
# looking only within search range, count & flag matched pairs
common_chars = 0
for i, s1_ch in enumerate(s1):
low = max(0, i - search_range)
hi = min(i + search_range, s2_len - 1)
for j in range(low, hi + 1):
if not s2_flags[j] and s2[j] == s1_ch:
s1_flags[i] = s2_flags[j] = True
common_chars += 1
break
# short circuit if no characters match
if not common_chars:
return 0.0
# count transpositions
k = trans_count = 0
for i, s1_f in enumerate(s1_flags):
if s1_f:
for j in range(k, s2_len):
if s2_flags[j]:
k = j + 1
break
if s1[i] != s2[j]:
trans_count += 1
trans_count //= 2
# adjust for similarities in nonmatched characters
weight = common_chars / s1_len + common_chars / s2_len
weight += (common_chars - trans_count) / common_chars
weight /= 3
# stop to boost if strings are not similar
if not self.winklerize:
return weight
if weight <= 0.7:
return weight
# winkler modification
# adjust for up to first 4 chars in common
j = min(min_len, 4)
i = 0
while i < j and s1[i] == s2[i]:
i += 1
if i:
weight += i * prefix_weight * (1.0 - weight)
# optionally adjust for long strings
# after agreeing beginning chars, at least two or more must agree and
# agreed characters must be > half of remaining characters
if not self.long_tolerance or min_len <= 4:
return weight
if common_chars <= i + 1 or 2 * common_chars < min_len + i:
return weight
tmp = (common_chars - i - 1) / (s1_len + s2_len - i * 2 + 2)
weight += (1.0 - weight) * tmp
return weight
class Jaro(JaroWinkler):
def __init__(
self,
long_tolerance: bool = False,
qval: int = 1,
external: bool = True,
) -> None:
super().__init__(
long_tolerance=long_tolerance,
winklerize=False,
qval=qval,
external=external,
)
class NeedlemanWunsch(_BaseSimilarity):
"""
Computes the Needleman-Wunsch measure between two strings.
The Needleman-Wunsch generalizes the Levenshtein distance and considers global
alignment between two strings. Specifically, it is computed by assigning
a score to each alignment between two input strings and choosing the
score of the best alignment, that is, the maximal score.
An alignment between two strings is a set of correspondences between the
characters of between them, allowing for gaps.
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
"""
def __init__(
self,
gap_cost: float = 1.0,
sim_func: SimFunc = None,
qval: int = 1,
external: bool = True,
) -> None:
self.qval = qval
self.gap_cost = gap_cost
if sim_func:
self.sim_func = sim_func
else:
self.sim_func = self._ident
self.external = external
def minimum(self, *sequences: Sequence[object]) -> float:
return -max(map(len, sequences)) * self.gap_cost
def maximum(self, *sequences: Sequence[object]) -> float:
return max(map(len, sequences))
def distance(self, *sequences: Sequence[object]) -> float:
"""Get distance between sequences
"""
return -1 * self.similarity(*sequences)
def normalized_distance(self, *sequences: Sequence[object]) -> float:
"""Get distance from 0 to 1
"""
minimum = self.minimum(*sequences)
maximum = self.maximum(*sequences)
if maximum == 0:
return 0
return (self.distance(*sequences) - minimum) / (maximum - minimum)
def normalized_similarity(self, *sequences: Sequence[object]) -> float:
"""Get similarity from 0 to 1
"""
minimum = self.minimum(*sequences)
maximum = self.maximum(*sequences)
if maximum == 0:
return 1
return (self.similarity(*sequences) - minimum) / (maximum * 2)
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
if not numpy:
raise ImportError('Please, install numpy for Needleman-Wunsch measure')
s1, s2 = self._get_sequences(s1, s2)
# result = self.quick_answer(s1, s2)
# if result is not None:
# return result * self.maximum(s1, s2)
dist_mat = numpy.zeros(
(len(s1) + 1, len(s2) + 1),
dtype=float,
)
# DP initialization
for i in range(len(s1) + 1):
dist_mat[i, 0] = -(i * self.gap_cost)
# DP initialization
for j in range(len(s2) + 1):
dist_mat[0, j] = -(j * self.gap_cost)
# Needleman-Wunsch DP calculation
for i, c1 in enumerate(s1, 1):
for j, c2 in enumerate(s2, 1):
match = dist_mat[i - 1, j - 1] + self.sim_func(c1, c2)
delete = dist_mat[i - 1, j] - self.gap_cost
insert = dist_mat[i, j - 1] - self.gap_cost
dist_mat[i, j] = max(match, delete, insert)
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
class SmithWaterman(_BaseSimilarity):
"""
Computes the Smith-Waterman measure between two strings.
The Smith-Waterman algorithm performs local sequence alignment;
that is, for determining similar regions between two strings.
Instead of looking at the total sequence, the Smith-Waterman algorithm compares
segments of all possible lengths and optimizes the similarity measure.
https://en.wikipedia.org/wiki/Smith%E2%80%93Waterman_algorithm
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/smith-waterman.js
"""
def __init__(
self,
gap_cost: float = 1.0,
sim_func: SimFunc = None,
qval: int = 1,
external: bool = True,
) -> None:
self.qval = qval
self.gap_cost = gap_cost
self.sim_func = sim_func or self._ident
self.external = external
def maximum(self, *sequences: Sequence[object]) -> int:
return min(map(len, sequences))
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
if not numpy:
raise ImportError('Please, install numpy for Smith-Waterman measure')
s1, s2 = self._get_sequences(s1, s2)
result = self.quick_answer(s1, s2)
if result is not None:
return result
dist_mat = numpy.zeros(
(len(s1) + 1, len(s2) + 1),
dtype=float,
)
for i, sc1 in enumerate(s1, start=1):
for j, sc2 in enumerate(s2, start=1):
# The score for substituting the letter a[i - 1] for b[j - 1].
# Generally low for mismatch, high for match.
match = dist_mat[i - 1, j - 1] + self.sim_func(sc1, sc2)
# The scores for for introducing extra letters in one of the strings
# (or by symmetry, deleting them from the other).
delete = dist_mat[i - 1, j] - self.gap_cost
insert = dist_mat[i, j - 1] - self.gap_cost
dist_mat[i, j] = max(0, match, delete, insert)
return dist_mat[dist_mat.shape[0] - 1, dist_mat.shape[1] - 1]
class Gotoh(NeedlemanWunsch):
"""Gotoh score
Gotoh's algorithm is essentially Needleman-Wunsch with affine gap
penalties:
https://www.cs.umd.edu/class/spring2003/cmsc838t/papers/gotoh1982.pdf
"""
def __init__(
self,
gap_open: int = 1,
gap_ext: float = 0.4,
sim_func: SimFunc = None,
qval: int = 1,
external: bool = True,
) -> None:
self.qval = qval
self.gap_open = gap_open
self.gap_ext = gap_ext
if sim_func:
self.sim_func = sim_func
else:
self.sim_func = self._ident
self.external = external
def minimum(self, *sequences: Sequence[object]) -> int:
return -min(map(len, sequences))
def maximum(self, *sequences: Sequence[object]) -> int:
return min(map(len, sequences))
def __call__(self, s1: Sequence[T], s2: Sequence[T]) -> float:
if not numpy:
raise ImportError('Please, install numpy for Gotoh measure')
s1, s2 = self._get_sequences(s1, s2)
# result = self.quick_answer(s1, s2)
# if result is not None:
# return result * self.maximum(s1, s2)
len_s1 = len(s1)
len_s2 = len(s2)
d_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
p_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
q_mat = numpy.zeros((len_s1 + 1, len_s2 + 1), dtype=float)
d_mat[0, 0] = 0
p_mat[0, 0] = float('-inf')
q_mat[0, 0] = float('-inf')
for i in range(1, len_s1 + 1):
d_mat[i, 0] = float('-inf')
p_mat[i, 0] = -self.gap_open - self.gap_ext * (i - 1)
q_mat[i, 0] = float('-inf')
q_mat[i, 1] = -self.gap_open
for j in range(1, len_s2 + 1):
d_mat[0, j] = float('-inf')
p_mat[0, j] = float('-inf')
p_mat[1, j] = -self.gap_open
q_mat[0, j] = -self.gap_open - self.gap_ext * (j - 1)
for i, sc1 in enumerate(s1, start=1):
for j, sc2 in enumerate(s2, start=1):
sim_val = self.sim_func(sc1, sc2)
d_mat[i, j] = max(
d_mat[i - 1, j - 1] + sim_val,
p_mat[i - 1, j - 1] + sim_val,
q_mat[i - 1, j - 1] + sim_val,
)
p_mat[i, j] = max(
d_mat[i - 1, j] - self.gap_open,
p_mat[i - 1, j] - self.gap_ext,
)
q_mat[i, j] = max(
d_mat[i, j - 1] - self.gap_open,
q_mat[i, j - 1] - self.gap_ext,
)
i, j = (n - 1 for n in d_mat.shape)
return max(d_mat[i, j], p_mat[i, j], q_mat[i, j])
class StrCmp95(_BaseSimilarity):
"""strcmp95 similarity
http://cpansearch.perl.org/src/SCW/Text-JaroWinkler-0.1/strcmp95.c
"""
sp_mx: tuple[tuple[str, str], ...] = (
('A', 'E'), ('A', 'I'), ('A', 'O'), ('A', 'U'), ('B', 'V'), ('E', 'I'),
('E', 'O'), ('E', 'U'), ('I', 'O'), ('I', 'U'), ('O', 'U'), ('I', 'Y'),
('E', 'Y'), ('C', 'G'), ('E', 'F'), ('W', 'U'), ('W', 'V'), ('X', 'K'),
('S', 'Z'), ('X', 'S'), ('Q', 'C'), ('U', 'V'), ('M', 'N'), ('L', 'I'),
('Q', 'O'), ('P', 'R'), ('I', 'J'), ('2', 'Z'), ('5', 'S'), ('8', 'B'),
('1', 'I'), ('1', 'L'), ('0', 'O'), ('0', 'Q'), ('C', 'K'), ('G', 'J'),
)
def __init__(self, long_strings: bool = False, external: bool = True) -> None:
self.long_strings = long_strings
self.external = external
def maximum(self, *sequences: Sequence[object]) -> int:
return 1
@staticmethod
def _in_range(char) -> bool:
return 0 < ord(char) < 91
def __call__(self, s1: str, s2: str) -> float:
s1 = s1.strip().upper()
s2 = s2.strip().upper()
result = self.quick_answer(s1, s2)
if result is not None:
return result
len_s1 = len(s1)
len_s2 = len(s2)
adjwt = defaultdict(int)
# Initialize the adjwt array on the first call to the function only.
# The adjwt array is used to give partial credit for characters that
# may be errors due to known phonetic or character recognition errors.
# A typical example is to match the letter "O" with the number "0"
for c1, c2 in self.sp_mx:
adjwt[c1, c2] = 3
adjwt[c2, c1] = 3
if len_s1 > len_s2:
search_range = len_s1
minv = len_s2
else:
search_range = len_s2
minv = len_s1
# Blank out the flags
s1_flag = [0] * search_range
s2_flag = [0] * search_range
search_range = max(0, search_range // 2 - 1)
# Looking only within the search range, count and flag the matched pairs.
num_com = 0
yl1 = len_s2 - 1
for i, sc1 in enumerate(s1):
lowlim = max(i - search_range, 0)
hilim = min(i + search_range, yl1)
for j in range(lowlim, hilim + 1):
if s2_flag[j] == 0 and s2[j] == sc1:
s2_flag[j] = 1
s1_flag[i] = 1
num_com += 1
break
# If no characters in common - return
if num_com == 0:
return 0.0
# Count the number of transpositions
k = n_trans = 0
for i, sc1 in enumerate(s1):
if not s1_flag[i]:
continue
for j in range(k, len_s2):
if s2_flag[j] != 0:
k = j + 1
break
if sc1 != s2[j]:
n_trans += 1
n_trans = n_trans // 2
# Adjust for similarities in unmatched characters
n_simi = 0
if minv > num_com:
for i in range(len_s1):
if s1_flag[i] != 0:
continue
if not self._in_range(s1[i]):
continue
for j in range(len_s2):
if s2_flag[j] != 0:
continue
if not self._in_range(s2[j]):
continue
if (s1[i], s2[j]) not in adjwt:
continue
n_simi += adjwt[s1[i], s2[j]]
s2_flag[j] = 2
break
num_sim = n_simi / 10.0 + num_com
# Main weight computation
weight = num_sim / len_s1 + num_sim / len_s2
weight += (num_com - n_trans) / num_com
weight = weight / 3.0
# Continue to boost the weight if the strings are similar
if weight <= 0.7:
return weight
# Adjust for having up to the first 4 characters in common
j = min(minv, 4)
i = 0
for sc1, sc2 in zip(s1, s2):
if i >= j:
break
if sc1 != sc2:
break
if sc1.isdigit():
break
i += 1
if i:
weight += i * 0.1 * (1.0 - weight)
# Optionally adjust for long strings.
# After agreeing beginning chars, at least two more must agree and
# the agreeing characters must be > .5 of remaining characters.
if not self.long_strings:
return weight
if minv <= 4:
return weight
if num_com <= i + 1 or 2 * num_com < minv + i:
return weight
if s1[0].isdigit():
return weight
res = (num_com - i - 1) / (len_s1 + len_s2 - i * 2 + 2)
weight += (1.0 - weight) * res
return weight
class MLIPNS(_BaseSimilarity):
"""
Compute the Hamming distance between the two or more sequences.
The Hamming distance is the number of differing items in ordered sequences.
http://www.sial.iias.spb.su/files/386-386-1-PB.pdf
https://github.com/Yomguithereal/talisman/blob/master/src/metrics/mlipns.js
"""
def __init__(
self, threshold: float = 0.25,
maxmismatches: int = 2,
qval: int = 1,
external: bool = True,
) -> None:
self.qval = qval
self.threshold = threshold
self.maxmismatches = maxmismatches
self.external = external
def maximum(self, *sequences: Sequence[object]) -> int:
return 1
def __call__(self, *sequences: Sequence[object]) -> float:
sequences = self._get_sequences(*sequences)
result = self.quick_answer(*sequences)
if result is not None:
return result
mismatches = 0
ham = Hamming()(*sequences)
maxlen = max(map(len, sequences))
while all(sequences) and mismatches <= self.maxmismatches:
if not maxlen:
return 1
if 1 - (maxlen - ham) / maxlen <= self.threshold:
return 1
mismatches += 1
ham -= 1
maxlen -= 1
if not maxlen:
return 1
return 0
hamming = Hamming()
levenshtein = Levenshtein()
damerau = damerau_levenshtein = DamerauLevenshtein()
jaro = Jaro()
jaro_winkler = JaroWinkler()
needleman_wunsch = NeedlemanWunsch()
smith_waterman = SmithWaterman()
gotoh = Gotoh()
strcmp95 = StrCmp95()
mlipns = MLIPNS()